Emergence is a formal theory about

SCALE (spatial scale; temporal scale)

and (more generally)

HIERARCHY (under which falls certain kinds of modularity)

- individual in a group
 (individual to group cognition)
 [e.g. of course, group vs. supergroup]

- economic systems
 - individual decision
 - within a context

- layers in a computational system
 (protocols for internet communication; multiple systems - the "emergence of networks")

SANTA FE INSTITUTE
* Introduction

* Symmetry
 Permutations, Shifts, and Finite Group Theory
 Invariances of Equations of Motion
 Continuous Symmetries
 Semigroups & “approximate” Symmetries

* Symmetry Breaking
 Essential vs. Spontaneous
 Navier-Stokes & Turbulent Symmetry Breaking
 Symmetry Restored?

* Phase Transitions
 Ising and XY Models
 Annealing vs. Domain Wall Formation
 Effective Theories for Defects

* Emergence Defined

* Signatures of Emergence in Animal Society
A General Definition of Emergence

From the lower-level theory or level of organization, is qualitatively different an effective theory of the system at some scale, a system has emergent properties when...
Signatures of Emergence in Animal Society

Emergence Defined

Effective Theories for Defects
Annealing vs. Domain Wall Formation
Ising and XY Models

Phase Transitions

Symmetry Restored?
Navier-Stokes & Turbulent Symmetry Breaking
Essential vs. Spontaneous

Symmetry Breaking

Semigroups & "Approximate" Symmetries
Continuous Symmetries
Invariances of Equations of Motion
Permutations, Shifting, and Finite Group Theory

Symmetry

Topics
Symmetry Group

\{C, B, A\} \\
\{A, C, B\} \\
\{B, A, C\} \\
S_3 = \{\text{shift right, shift right twice, swap first two}\} \\
\text{swap first and last} \\
\text{swap second two}
\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix} \sim (\varnothing, \varnothing) H
\]

\[
\begin{cases}
0 & \text{otherwise} \\
1 & \text{if } \varnothing = \varnothing
\end{cases}
= (\varnothing, \varnothing) H
\]

\{ \varnothing \in A', B', C \}

Symmetry Group
Essential Symmetry Breaking

$S_3 \rightarrow \mathbb{Z}_2$

$H(\sigma_i, \sigma_j) \sim \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

$H(\sigma_i, \sigma_j) \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$
Continuous Symmetries

O₃ \rightarrow O₂ \rightarrow Z_{2n}

all rotations in 3 dimensions
a.k.a. O₃

only rotations in 2 dimensions
a.k.a. O₂

discrete rotations in 2 dimensions
a.k.a. Z_{2n}

(where n is the number of longitude marks)
But the solution doesn't

Governing the system have a symmetry
(Equations (and boundary conditions)

Spontaneous Symmetry Breaking
