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Abstract

This paper gives a critical account of the literature on adaptive behavior in the minority

game, a simple congestion game. The literature has proposed a model which differs markedly

from many standard learning models in that players are endowed with a fixed subset of

behavioral rules or response modes which map the observed history to actions. These rules

need not have a behavioral interpretation or be derived from some form of optimizing behavior.

Nonetheless, this model gives rise to behavior that is close to equilibrium behavior at the

aggregate level. The individual-level behavior predicted by the model seems to capture some

aspects of observed experimental behavior that are difficult to explain using standard models.
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1 Introduction

Congestion games are ubiquitous in economics. In a congestion game, players use several

facilities from a common pool (Rosenthal, 1973). The costs or benefits that a player derives from

a facility depends on the number of users of that facility. A congestion game is therefore a natural

game to model scarcity of common resources. Examples of such systems include vehicular traffic

(Nagel et al., 1997), packet traffic in networks (Huberman and Lukose, 1997), and ecologies of

foraging animals (DeAngelis and Gross, 1992). Similar coordination problems are encountered in

market entry games (Selten and Güth, 1982).

The evolution of behavior in congestion games has been studied extensively. Many learning

models give sharp predictions for these games, as congestion games form a subclasss of the

well-studied class of potential games (Hofbauer and Hopkins, 2005; Hofbauer and Sandholm,

2002; Monderer and Shapley, 1996; Sandholm, 2001, 2010). There is, however, an experimental

puzzle. At the aggregate level, players are remarkably successful at coordinating their actions, so

that aggregate play is consistent with Nash equilibrium predictions (e.g Kahneman, 1988; Meyer

et al., 1992; Selten et al., 2007). However, these regularities at the aggregate level conceal non-

equilibrium behavior at the individual level (Meyer et al., 1992; Erev and Rapoport, 1998; Selten

et al., 2007; Bottazzi and Devetag, 2004), something which is hard to explain using standard

learning models.

This paper provides a survey of the literature on the minority game, a simple congestion game,

which has proposed an alternative model. In a minority game, an odd number of players have to

choose between two alternatives, and the ones that have chosen the least popular alternative (the

“minority” action) receive the highest payoff. The learning model, inspired by the seminal paper

of Arthur (1994) and largely developed within the physics literature, departs from the standard

literature in assuming that players are endowed with a fixed subset of behavioral rules or response

modes which map the observed history of play to an action for the next period. Importantly,

these rules need not have a behavioral interpretation or be derived from some implicit optimizing

procedure. In each period of play, a player chooses one of his response modes based on past

performance; the response mode then selects an action for the next period as a function of the

history of play. I relate this so-called fixed-rules learning model to the standard learning models

in economics, and show how the assumption that players have fixed response modes can aid in

explaining experimental findings.1 In particular, not only does the model predict aggregate-level

behavior that is close to equilibrium, it can also capture some aspects of observed individual-level

behavior that are difficult to explain with other models.

After introducing the minority game and some related games in Section 2, I provide an

overview of some experimental findings on learning in congestion games in Section 3. Section 4

introduces the learning model with fixed rules, and relates it to the wider literature on learning in
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games. Section 5 discusses the main predictions of the fixed-rules model, and relates them to the

experimental evidence. Section 6 concludes by outlining possible directions for future research.

2 The minority game

The minority game is a game in which an odd number of players have to choose between

two actions, e.g., going to a bar or stay home, buy or sell an asset, and so on. Players want to

distinguish themselves from the crowd: their aim is to take a different action than the majority

of players.

More precisely, the set of players is N = {1, . . . , 2k+ 1}, where k ∈ N. Each player i ∈ N has

two actions, labeled −1 and +1. Write Ai = {0, 1} for the set of actions of player i. The utility

of a player only depends on the number of players taking each action. That is, for each b ∈ Ai,
there exists a function fb mapping the number of players mb ∈ {0, 1, . . . , 2k + 1} taking action b

to R, so that the utility of a player i of action ai ∈ Ai given that the other players play according

to a−i ∈ ×j 6=iAj is

ui(ai, a−i) = fai(|{j ∈ N : aj = ai}|).

As discussed by Tercieux and Voorneveld (2010), minority games are characterized by the

assumption that a player always benefits from deviating from the majority to the minority: For

all m ∈ {k + 2, . . . , 2k + 1},
fa(m) < fb(2k + 2−m)

for a, b ∈ {−1,+1} such that a 6= b. A common assumption is that the congestion effect is the

same across alternatives:

f−1 = f+1.

A commonly used form is f−1(m) = f+1(m) = 1 if m ≤ k and 0 otherwise (Challet and Zhang,

1997). In an alternative specification, players’ payoffs decrease linearly in the number of players

taking the same action. The exact form of the utility function has a limited impact on the

predictions of the learning model (Li et al., 2000). The minority game is thus a congestion game

(Rosenthal, 1973), with the payoffs to each action depending on the number of players taking

that action. It is therefore a (finite exact) potential game (Monderer and Shapley, 1996).

Tercieux and Voorneveld (2010) and Kets and Voorneveld (2007) characterize the pure and

mixed Nash equilibria of the game, respectively. The game has a large number of Nash equilib-

ria (in fact a continuum). Most notably, in each pure Nash equilibrium, k players choose one

alternative, and k + 1 players the other. These equilibria are payoff-asymmetric, but not strict,

as a deviation from a player from the majority action to the other alternative would shift the

minority. There is a unique symmetric mixed Nash equilibrium in which all players randomize

between both actions with probability 1/2. In addition, there are mixed equilibria in which some
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subset of the players randomize, while others choose a mixed strategy. In particular, there is a

class of equilibria in which k players choose a = −1, k players choose a = +1, and the remaining

player randomizes between both alternatives with any probability.

The minority game is closely related to two congestion games that have been studied experi-

mentally, the market entry game and the route-choice game. In a market entry game, introduced

by Selten and Güth (1982), players must decide whether to enter a market with a fixed capacity

c or to stay out.2 Players who enter the market receive a payoff that decreases in the number of

entrants. The payoff to players who stay out of the market is typically taken to be constant. Like

the minority game, the game generally has a large number of Nash equilibria, both in pure and

in mixed strategies. An important difference between the market entry game and the minority

game is that in the latter game, the payoffs of both actions depend on the number of players

choosing that action, while in the market entry game, players can choose an action (staying out)

whose payoffs are independent of the number of players choosing that action.

Route-choice games are closer to the minority game in that the payoffs of all actions are

subject to congestion. In a route-choice game, players choose between two or more roads, where

the payoffs of choosing a road decrease in the number of other players who choose that road

(see Selten et al., 2007, and references therein). For the cost functions commonly studied in the

literature, the equilibria of the game are such that players divide themselves over the roads so as

to equalize travel times and thus payoffs. Consequently, the pure Nash equilibria of the game are

payoff-symmetric and strict, in contrast with the minority game.

A priori it is not clear whether players can learn to play according to an equilibrium in

these games, for a number of reasons. First, these games have a large number of equilibria, so

that players face the difficulty of coordinating on the same equilibrium. As the equilibria in

pure strategies cannot be Pareto-ranked or ordered in terms of risk-dominance, no particular

pure-strategy Nash equilibrium can be singled out as being most salient (Schelling, 1960), so

that without pre-play communication, players may not have enough information to implement a

pure Nash equilibrium (cf. Menezes and Pitchford, 2006). Second, in congestion games, players

may obtain asymmetric payoffs in equilibrium which may complicate attainment of equilibrium,

as coordination cannot be achieved through tacit coordination based on historical precedent (cf.

Meyer et al., 1992). Third, the pure Nash equilibria of the game require players to sort themselves

across alternatives. This violates the common belief that in symmetric games, all rational players

will evaluate the situation identically, and hence, make the same choices in similar situations (see

Harsanyi and Selten, 1988, p. 73). The question whether players can learn to play according to

an equilibrium in such congestion games, despite the apparent difficulties, has motivated a large

number of experimental studies. The next section surveys some remarkable experimental results

on these games.
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3 Aggregate and individual behavior in congestion games

A robust experimental finding in market entry games is that subjects quickly learn to coor-

dinate their play in the sense that aggregate play is close to equilibrium (Ochs, 1990, p. 169).

For instance, Erev and Rapoport (1998) find that the number of entrants in a market entry game

rapidly converges to the equilibrium value. Similarly, in their experiments on route-choice games,

Selten et al. (2007) observe that the mean number of drivers on the different roads is very close to

the equilibrium number. Similar experimental results have been reported for the minority game

(Bottazzi and Devetag, 2007; Chmura and Pitz, 2006).

However, individual players generally do not play equilibrium strategies, even after a sub-

stantial learning period.3 For instance, Erev and Rapoport (1998) observe large between- and

within-subject variability which does not diminish with experience. In the context of route-choice

games, Selten et al. (2007) reports that large fluctuations in individual behavior persist until the

end of the experiment, as is the case in experiments on the minority game (Bottazzi and Devetag,

2007; Chmura and Pitz, 2006). In all cases, the hypothesis that fluctuations can be explained by

a symmetric mixed Nash strategy equilibrium of the game can be rejected.

In many cases, it is not clear what type of behavioral rules subjects employ when they choose

an action based on previous experience. For example, Selten et al. (2007) are unable to classify

42% of the subjects in terms of the behavioral rules they use in their route-choice experiments,

while Zwick and Rapoport (2002) cannot classify the behavior of some 60% of their subjects in

their experiments on the market entry game. This suggests that a significant fraction of subjects

do not use rules that are readily explicable in terms of optimizing behavior or based on intuitive

rules of thumb.

While the individual rules may not be easy to classify, the interplay between the different

rules leads to behavior that is close to equilibrium. Some authors conjecture that subjects de-

velop counteracting behavioral rules (Bottazzi and Devetag, 2007; Chmura and Pitz, 2006; Erev

and Rapoport, 1998; Rapoport et al., 2000; Selten et al., 2007; Zwick and Rapoport, 2002). For

example, in the experiments of Selten et al. (2007), subjects have to choose between two roads,

with the payoffs of a given road decreasing in the number of players choosing that road. Sel-

ten et al. report that some subjects use a “direct” response mode, while other subjects use a

“contrary” response mode. Subject who use the former response mode will switch roads if they

experienced congestion in the last period, while subjects using the contrary response mode stick

with their choice, as they expect other subjects to switch. More complicated rules are of course

conceivable. At the aggregate level, play will be close to equilibrium as long as there is the

right mix of behavioral rules, leading players to differentiate their choices. This does not mean

that individual behavior conforms to a Nash equilibrium, however. In particular, there may be

correlation in players’ behavior across periods.
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hm si,1 si,2 si,3 si,4

(−1,−1,−1) +1 −1 −1 +1

(−1,−1,+1) −1 −1 +1 −1

(−1,+1,−1) +1 −1 −1 +1

(−1,+1,+1) −1 +1 −1 +1

(+1,−1,−1) +1 +1 +1 +1

(+1,−1,+1) −1 −1 +1 +1

(+1,+1,−1) −1 −1 −1 +1

(+1,+1,+1) −1 +1 −1 +1

Table 1: An example of a subset of response modes for memory length m = 3 for some player i.

For instance, if the history of outcomes is (−1,−1,−1), then the behavioral rule si,1 prescribes

action ai = +1.

These experimental findings, and in particular the persistence of nonequilibrium choices at

the individual level, cannot easily be explained by most learning models, which typically predict

convergence to the pure Nash equilibria of such games or to Nash equilibria with at most one

player who plays a mixed strategy.4 The next section introduces the fixed-rule learning model,

which departs from most other learning models by assuming that players have a fixed set of

behavioral rules or response modes.

4 Learning with fixed rules

4.1 Model

At each period in time, an odd number of players play the minority game. After each round

of play, they observe the aggregate play in that period. Each player is endowed with a fixed set

of behavioral rules or response modes which they use to select an action for the next period. A

response mode maps the recent history of play to an action for the next period. Which response

mode a player uses depends on the performance of his response modes in past periods.

More formally, time is discrete and indexed by t. At each time t, the stage game is played.

After each round of play t of the stage game, the players learn which of the two actions was

chosen by the minority of players. That is, if ` ≤ k players chose a = +1 in period t, with the

other players choosing a = −1, then players receive the signal M(t) = +1. It is assumed that

players have a limited memory: They only retain the sequence of the minority actions in the

previous m rounds, where m ∈ N. That is, each player observes the same history at time t, given

by hm(t) := (M(τ))τ∈{t−m,t−m+1,...,t−1}.

A behavioral rule or response mode s assigns to each history hm ∈ {−1,+1}m an action
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a ∈ {−1,+1}. That is, a response mode s prescribes which action s(hm(t)) ∈ {−1,+1} to take,

for a given history of play hm(t) at time t. Note that response modes are stationary: s(hm(t))

does not depend on t, other than through hm(t). Because there are 2m possible signals hm of

length m, and two possible actions for each signal, there are 22m response modes. These response

modes need not have an intuitive interpretation; they are simply fixed rules that a player could

use to select an action for the next period.

A key assumption in the model is that each player i is endowed with a random subset Si of the

set of all response modes, which is fixed across periods. All players are endowed with the same

number of response modes; denote this number by nS . For each player i, the response modes in

Si are drawn uniformly at random from the set of all response modes for histories of length m,

independently across players. An example for nS = 4 and m = 3 is given in Table 1.

After observing the current history, a player has to choose one of his response modes to

determine his action for the next period. Which rule he chooses depends on the performance of

the different response modes, as summarized by their virtual score. The virtual score of each

response mode is updated after each time period, regardless of whether the response mode has

been used in that periodor not. When a response mode would have correctly predicted the

minority action, its virtual score is increased with the payoffs it would have earned, otherwise it

is decreased with the same amount. More specifically, the virtual score that player i assigns to

response mode si ∈ Si at time t is given by:

pi,t(si) = pi,t−1(si)−
(
si(hm(t))

2k + 1

) [
2(k −msi(hm(t))(t)) + 1

]
where ma(t) is the number of players choosing action a ∈ {−1,+1} in round t.

It is important to note that players do not take the effect of their action on the aggregate

outcome into account. In determining the virtual score of a response mode, players only consider

whether this response mode would have predicted the actual outcome correctly, not taking into

account whether following this response mode would have affected the outcome. That is, suppose

that at time t, player i chooses ai = −1, and that the total number of players choosing this action

is m−1(t) = k+ 1, i.e., −1 is the majority action. Then, 2(k− (k+ 1)) + 1 = −1 would be added

to all response modes prescribing action ai = −1 , and −(2(k−(k+1))+1) = +1 would be added

to all response modes prescribing ai = +1. However, if player i would have chosen ai = +1, the

number of players choosing a = +1 would have been k+ 1, and +1 would have been the majority

action.

The probability that a player chooses a response mode at a given time step is determined by

its virtual score at that time, with the choice probabilities following the well-known logit choice

rule. For i ∈ N , denote the response mode selected by player i at time t by si(t). Then,

∀si ∈ Si : P(si(t) = si) =
exp [β pi,t(si)]∑

sj∈Si
exp [β pi,t(sj)]

.
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The parameter β can be interpreted as the sensitivity of choice to marginal information. In the

limiting case β →∞, players choose the response modes with the highest virtual score. Otherwise,

every response mode is chosen with positive probability, with the probability increasing in the

virtual score of the response mode.5

4.2 Discussion

In this section, I discuss two assumptions of the fixed-rules learning models that are nonstan-

dard: the assumption that players are endowed with a random subset of response modes and the

assumption that players update the virtual scores of response modes without taking into account

the effect of that response mode on the game’s outcome.

4.2.1 Fixed rules

The learning model discussed in the previous section departs from much of the literature on

learning in assuming that each player is endowed with a fixed set of rules that determine his

action as a function of the recent history of play, choosing the behavioral rule with the best past

performance to select their action for the next period. By contrast, most learning models either

assume that players have a single behavioral rule (such as “play a (myopic) best response to the

recent history of play,” as in fictitious play), or choose among actions based on past performance

(as in reinforcement learning).

The assumption that players have a fixed set of different behavioral rules from which they

choose is motivated by the work of Arthur (1994). In the game considered by Arthur, players

need to decide whether to go to a bar or not. Going to the bar is only pleasant if it is not too

crowded. Arthur suggests that players condition their decision to go on attendance levels in the

previous weeks. For example, if the bar has been crowded for the last three weeks, they expect it

to be crowded next week also. These mental models are mapped into actions: if a player expects

the bar to be crowded, he will not go.

There is of course a large number of possible rules of this type, as illustrated by the long

list of examples in Arthur (1994). An important question, therefore, is which response modes

need to be included in the model. This is a nontrivial issue. As noted by Erev and Roth (1998,

p. 873), while it is virtually impossible to include all possible behavioral rules, selecting specific

rules bears the risk of “parameter fitting in a model with an enormous number of parameters.”

The fixed-rules learning model therefore takes an agnostic approach, endowing players with a

random subset of behavioral rules, so that no response mode is ruled out a priori. Players then

choose the behavioral rule that performs best, given the behavioral rules of others. This allows

behavioral rules, as well as actions, to coevolve. In a game such as the minority game, this may

be a reasonable assumption. Whether a response mode is successful depends only on the response

modes used by others. Conversely, any response mode, whether it has a sensible interpretation or
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not, will work if opponents use response modes that give rise to anti-correlated play. An agnostic

approach as to which response modes players use may therefore be an elegant solution to the

dilemma described by Erev and Rapoport, at least for this class of games.

This approach does raise a number of questions. First, one may ask why different players are

endowed with a different set of response modes. A possible justification for such an assumption is

that each player has different experiences prior to playing the game, and therefore has a different

view as to which response modes are successful (cf. Aumann, 1997; Fudenberg and Levine, 1998).

Second, and perhaps more importantly, one could ask why players only use a fixed number of

response modes. It seems that individual players have an incentive to increase the number of

response modes they use, to obtain an advantage over other players.6 Even if it is reasonable to

assume that players only use a fixed subset of simple “rules of thumb” (cf. Ellison and Fudenberg,

1993), rather than considering all 22m response modes, it seems likely that over the longer run,

players will adapt the set of rules they use. It is not clear what effect this would have on the

evolution of play.

4.2.2 The law of simulated effect and simple decision rules

The fixed-rules learning model assumes that players also update the virtual score of strategies

that are not used in that period. The assumption that players also consider the payoffs to

strategies or response modes not played seems to be a reasonable one. Camerer and Ho (1999)

argue on the basis of theoretical arguments as well as experimental evidence that players obey

not only the “law of actual effect,” but also the “law of simulated effect,” meaning that in

reinforcement, not only payoffs from strategies that are actually used count, but also foregone

payoffs from strategies not played.7

Learning models that are based on the law of simulated effect have sometimes been criticized

as being too demanding in terms of players’ rationality. Not only do players need to to know

the payoff structure of the game and the actions of other players, they also have to calculate

their payoffs for the hypothetical case in which they chose a different action. Even if players

only need to know the aggregate action, as in the minority game, this may require too much

rationality on the part of the players. One way to reconcile players’ bounded rationality with

the law of simulated effect is to assume that players do not take the effect of their own action on

the global outcome into account. In that way, players can account for foregone payoffs of actions

or response modes not used, without having to do complicated calculations. That is, players

use simple decision rules, as opposed to clever decision rules, in the terminology of Sandholm

(1998). This is indeed the route taken in the fixed-rules learning model, but as we will see, this

assumption is not innocuous in the minority game.
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Figure 5.1: Time evolution of the aggregate action A(t), where the number of players is |N | = 301

and each player has nS = 2 response modes. Panels correspond to memory length m = 2, 7, 15

from top to bottom. Figure taken from Moro (2003).

5 Theoretical predictions and experimental evidence

This section provides an overview of the main results on the evolution of play in the minority

game, assuming that players’ adaptive behavior is described by the fixed-rules learning model.

Some results in the literature are obtained analytically, others by simulations. In the simulations,

a given number of agents is endowed with a random subset of response modes, and results are

obtained by averaging over different assignments of response modes. In the first two sections, I

characterize the behavior of the model in terms of social efficiency and informational efficiency,

and show that the two are intimately related in the current learning model. In Section 5.3, I

discuss how the predictions of the model can be understood in terms of the formation of groups

that use counteracting response modes.

5.1 Aggregate play and volatility

An important question is whether the fixed-rules model can reproduce the experimental find-

ing that aggregate play is close to equilibrium. In any equilibrium of the minority game, each

alternative will be chosen (on average) by approximately half of the players–if not, a player in the

majority could gain by switching to the minority action. Simulations of the fixed-rule learning

model indeed show that the aggregate action A(t) :=
∑

i∈N ai(t) as a function of time keeps fluc-

tuating around 0 (corresponding to the state where each action is chosen by half of the players),

as can be seen in Figure 5.1. As the game is symmetric, the time average of A(t) will be 0 in the

long run (e.g., Challet and Zhang, 1997).
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Figure 5.2: The time-averaged volatility, scaled by the number of players |N | as a function of α for

nS = 2 response modes per player and different number of players |N | := 101, 201, 301, 501, 701

(�, ♦, 4, C, O, respectively). Inset: players’ average success rate as function of α (not discussed

here; see Moro (2003) for a discussion). Figure taken from Moro (2003).

As can be seen in Figure 5.1, the variance or volatility of the aggregate action depends on

players’ memory length m. The volatility is an important variable in the present setting, as

it is negatively related to players’ success at coordinating their actions (as measured by total

payoffs). Intuitively, large fluctuations imply that the size of the minority is only small, so that

high volatility is associated with low total payoffs. It turns out that the volatility is in fact

a nonmonotonic function of the memory length. Figure 5.2 shows the time-averaged volatility,

denoted by σ2, scaled by the number of players |N | = 2k + 1, as a function of α := 2m/|N |, for

a fixed number of response modes nS = 2. Section 5.3 discusses why it is natural to view the

volatility as a function of α.

As can be seen from the figure, the behavior of the (time-averaged) volatility as a function

of α is complex. In the limit of large α, the volatility converges to the volatility exhibited in the

symmetric mixed Nash equilibrium. For smaller memory lengths (α small), total payoffs are much

lower. In fact, the volatility is of order (2k+ 1)2, so that the size of the group of players choosing

the minority action is much smaller than k. However, for intermediate values of α, volatility

is much lower than in the symmetric mixed Nash equilibrium. This suggests that players can

somehow coordinate their play to reduce the volatility relative to the symmetric mixed Nash

equilibrium. Coordination is not complete, however; while players come close to the level of

volatility under a pure Nash equilibrium at the value of α at which volatility is at its minimum,

they never reach it.
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What prevents players from reaching the maximal level of coordination? It turns out that

players continuously switch between the response modes they use, which makes that aggregate

play does not settle down. What drives this behavior? Interestingly, this continuous switching

is driven by the assumption that players update the virtual scores of all their response modes,

whether they were used or not, not taking into account what the effect of their own action would

have been on the collective outcome for response modes not used. While one might think that

with a large number of players, the effect of one player’s action will be limited, this is not the

case for the minority game. Recall that response modes that are not used are rewarded if they

prescribe the minority action for that period, even if playing that action would have tipped the

minority to the other side. The response mode that was actually used of course does not have

that advantage. This makes that players keep switching between response modes: over time,

a response mode that is not played for some time will gather sufficiently many virtual points

so as to be selected to be played, thus losing its advantage, until another response mode takes

over again. Indeed, if players correct for this bias by allocating a small additional reward to the

response mode that they currently use, players use the same response mode in every period (in

the limit β → ∞), and play converges to one of the pure Nash equilibria of the game, provided

that the memory length m is sufficiently small (Marsili et al., 2000).

5.2 Information and efficiency

As discussed in the previous section, players seem to be able to coordinate reasonably well

for some parameter value. How does this coordination come about? The only way players can

coordinate is through the history of play. The question is thus whether the past history of play

contains information that can help players coordinate their action. The information content of

the history of play, or the degree of predictability can be measured by (Challet and Marsili, 1999):

H :=
1

|Hm|
∑
ν∈Hm

〈A(t+ 1) | hm(t) = ν〉2,

where 〈A(t + 1)|hm(t) = ν〉 is the time average of the aggregate action conditional on a given

history of play (for t large), and ν runs over the possible histories Hm of length m. Loosely

speaking, H measures the information in the time series of A(t). If A(t + 1) and hm(t) are

independent, then H = 0. If H > 0, then the signal A(t) contains information.

The way players choose their response modes in the fixed-rules learning model leads them to

minimize the degree of predictability (Marsili et al., 2000). It is again the parameter α which

determines how successful players are at doing that, as can be seen in Figure 5.3. Interestingly,

the system changes from an informationally efficient phase with low aggregate payoffs (H = 0,

σ2 large) to an information-rich phase with high aggregate payoffs (H > 0, σ2 small) at a critical

value αc of α, and αc is exactly the value where the volatility is at its minimum (Figure 5.2).
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discussed here; see Moro, 2003) as a function of α = 2m/|N | for nS = 2 response modes per

player and memory length m = 5, 6, 7 (◦, �, and �, respectively). Figure taken from Moro

(2003).

This transition between the informationally efficient and the information rich phase, or equiv-

alently between the phase with low aggregate payoffs and the phase with high aggregate payoffs, is

central to the current learning model. At this transition, there is a qualitative change in collective

behavior, while the principles behind the behavior of individual players remain unchanged. For

all values of α, players try to outsmart each other, but for low values of α, they are on average

less successful. The next section discusses the interpretation of α.

5.3 Response modes and their antagonists

The previous section shows that the qualitative behavior of the learning model is primarily

a function of α = 2m/|N |, where m is players’ memory length and |N | is the number of players

(for a fixed number of response modes nS). Why does this parameter drive the behavior of the

model?

Intuitively, the minority rule forces players to differentiate their actions. As there are 22m

response modes for |N | players, one would expect that players succeed in differentiating if |N | is

much smaller than 22m , and be unsuccessful when |N | exceeds 22m , which means that one would

expect a qualitative change in behavior when |N | is of the order 22m , rather than of order 2m, as

observed.

The reason why it is the ratio between 2m and |N | that drives behavior rather than that

between 22m and |N | is that the important variable is not how many response modes players
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can use, but how many different response modes they have. Say that two response modes are

sufficiently anti-correlated if they prescribe a different action after at least half of the histories

of play (of length m). Challet and Zhang (1998) have shown that for each response mode, the

number of response modes that are sufficiently anti-correlated with it is proportional to 2m. This

means that the qualitative behavior of the model is driven by the ratio between 2m and |N |.
This leads us to an intuitive interpretation of the model’s results in terms of the interaction

of groups using different response modes. Take two response modes s and s̄ which describe a

different action after every possible history of length m, i.e., s and s̄ are anti-correlated. Suppose

Ns players use the response mode s in a given time period, while Ns̄ players use the anti-correlated

response mode s̄. If Ns is approximately equal to Ns̄ for all anti-correlated pairs (s, s̄) of response

modes, then the actions of players effectively cancel out and the volatility will be small.

Whether the actions of players using a certain response mode s and its antagonist s̄ can

cancel out depends on the dimension of the space of response modes is fixed by the parameter m.

When the number of players is large relative to the number of response modes that are available

(α small), then players are forced to use response modes that are positively correlated, so that

volatility will be large. For intermediate values of α, players use response modes that are either

sufficiently anti-correlated, so that volatility is minimal. When m is very large relative to the

number of players, the number of players using each response mode will only be small, so that

players act more or less independently and the volatility will be close to that under the symmetric

mixed Nash equilibrium (Moro, 2003). However, aggregate payoffs are still higher than under the

benchmark of the symmetric mixed Nash equilibrium, as there always exist pairs of players that

follow anti-correlated response modes (Challet and Zhang, 1998).

5.4 Comparison with experimental results

Can we relate this to the experimental results in Section 3? As noted above, the aggregate

behavior is close to Nash play, in the sense that on average, the fraction of players choosing each

alternative is close to 1/2. The idea that players achieve this by using counteracting response

modes seems intuitive. Indeed, Selten et al. (2007) find that players sort in groups in the route-

choice game, with one group of subjects switching roads if the road they chose in the previous

period was congested (“direct response mode”), another group of subjects sticking to their choice

of road if it was congested (“contrary response mode”), and subjects whose behavior is harder to

classify. The number of players using the direct response mode was not close to the number of

players using the contrary response mode, however, and indeed, large fluctuations in play around

Nash play persisted until the end of the experiment. Also, Bottazzi and Devetag (2007) find

that there is considerable heterogeneity in players’ behavior in their experiments on the minority

game. They show that it is not the heterogeneity per se which determines the players’ success in

coordinating, rather, it is the interaction between these different behavioral rules that make that
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players can successfully coordinate their play.

While the fixed-rules learning model thus demonstrates how aggregate Nash play and individ-

ual nonequilibrium behavior can be reconciled in a natural way, there are two important caveats.

First, as noted earlier, there is a large fraction of subjects whose behavior cannot easily be classi-

fied in terms of response modes (Selten et al., 2007; Zwick and Rapoport, 2002). This could mean

that subjects use response modes that may not have an intuitive interpretation (and are thus not

recognized by the experimenters) but that nevertheless perform well, but it could also mean that

their behavior is driven by an entirely different mechanism. A systematic study of the different

response modes used by experimental subjects seems needed. Indeed, Zwick and Rapoport (2002)

conclude that there is a need “to re-orient research on interactive decision making to individual

differences, identify patterns of behavior shared by subsets of players . . . , and then attempt to

account for aggregate behavior in terms of the behavior of the clusters of players that form these

aggregates.”

Second, a key prediction of the fixed-rules model is that players continue to switch between

response modes (see the discussion in Section 5.1). This has not been tested experimentally; the

few experiments that have tried to classify subjects’ response modes only look whether subjects

use a stationary response mode. Testing whether and how subjects switch between response

modes seems challenging, as changes in actions and in response modes cannot easily be separated.

6 Concluding remarks

While adaptive behavior in congestion games is well understood theoretically, a number of

experimental findings seem hard to explain using standard learning models. This paper surveys

an alternative learning model, whose distinguishing feature is that players are endowed with a

random set of behavioral rules or response modes. It is shown how models of this type can aid

in reconciling seemingly conflicting experimental results in congestion games. In particular, it

offers an intuitive explanation of how aggregate play can be close to Nash equilibrium behavior

in congestion games, while individual play does not conform to any equilibrium. In the model,

players naturally sort into groups that use counteracting response modes, which means that

aggregate play will be close to the equilibrium prediction, while individual behavior can be very

far from equilibrium.

There are a number of important open questions. First, as argued in the previous section,

more experimental tests are needed to see whether the model provides a good description of ex-

perimental play in congestion games. In particular, a better understanding of individual behavior

and changes in behavior is needed. On the theoretical front, it seems natural to apply the model

to other congestion games. An important question is to what extent the prediction that players

keep switching response modes holds up in other games. Finally, as argued in Section 4.2, it

15



seems natural to allow players to adapt the set of response modes they use over time, for exam-

ple allowing them to experiment with different response modes at a low rate, to replace response

modes that have not been performing well. How this would affect predictions is an open question.
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Notes

1This paper does not aim to provide a comprehensive survey of the extensive literature on the minority game,

as it is impossible to justice to the extensive literature here. See Moro (2003); Challet et al. (2004) or Coolen

(2005) for an introduction to the field. Papers in economics on the minority game include Bottazzi and Devetag

(2007), Chmura and Pitz (2004), and Renault et al. (2005). Blonski (1999) and Kojima and Takahashi (2007)

study learning in games very similar to the minority game.
2See Ochs (1999) for a survey of the experimental literature on the market entry game. Kahneman (1988)

proposed a similar game.
3An exception is Duffy and Hopkins (2005) who find that subjects coordinate on one of the pure Nash equilibria

of the market entry game after a large number of rounds when they are given feedback on others’ choices.
4See Duffy and Hopkins (2005) and Kets and Voorneveld (2007) for a discussion of the predictions of different

learning models for market entry games and minority games, respectively.
5The model is thus very similar to that analyzed by Cominetti et al. (2010). The main difference is that in that

model, each player tracks the past performance of every strategy, which is mapped into a vector that specifies the

probability with which the player chooses each strategy in the next period. Here, players choose response modes

based on their past performance, and the response mode in turn determines the choice of action.
6Indeed, players in the minority game obtain higher payoffs when they use a larger set of response modes, ceteris

paribus (Marsili et al., 2000).
7A similar idea underlies models of regret-based learning (Foster and Vohra, 1999; Hart and Mas-Colell, 2000;

Young, 2004).
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