The Hunt for a Quantum Algorithm for Graph Isomorphism

Cristopher Moore, University of New Mexico
Alexander Russell, University of Connecticut
Leonard J. Schulman, Caltech
The Hidden Subgroup Problem

• Given a function \(f(x) \), find the \(y \) such that

\[
f(x + y) = f(x)
\]

for all \(x \).

• Given a function \(f \) on a group \(G \), find the subgroup \(H \) consisting of \(h \) such that

\[
f(gh) = f(g)
\]

for all \(g \).
The Hidden Subgroup Problem

- This captures many quantum algorithms: indeed, most algorithms which give an exponential speedup.
 - \mathbb{Z}_2^n: Simon’s problem
 - \mathbb{Z}_n^*: factoring, discrete log (Shor)
 - \mathbb{Z}: Pell’s equation (Hallgren)

What can the non-Abelian HSP do?
Graph Isomorphism

- Define a function f on S_{2n}. If both graphs are rigid, then either f is 1–1 and $H = \{1\}$, or f is 2–1 and $H = \{1, m\}$ for some involution m (of a particular type).
Standard Method: Coset States

- Start with a uniform superposition, \[\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle \]

- Measuring \(f \) gives a random coset of \(H \):
 \[|cH\rangle = \frac{1}{\sqrt{|H|}} \sum_{h \in H} |ch\rangle \]
 or, if you prefer, a mixed state:
 \[\rho = \frac{1}{|G|} \sum_{c \in G} |cH\rangle \langle cH| \]
The Fourier Transform

- We now perform a basis change. In \mathbb{Z}_n,

 $$|k\rangle = \frac{1}{\sqrt{n}} \sum_x e^{2\pi i k x / n}$$

 and in \mathbb{Z}_2^n,

 $$|k\rangle = \frac{1}{\sqrt{2^n}} \sum_x (-1)^{k \cdot x}$$

- Why? Because these are homomorphisms from G to \mathbb{C}. These form a basis for $\mathbb{C}[G]$ with many properties (e.g. convolution)
Group Representations

- Homomorphisms from groups to matrices:
 \[\sigma : G \rightarrow U(V) \]

- For instance, consider this three-dimensional representation of \(A_5 \).

- Any representation can be decomposed into a direct sum of irreducible representations.
Heartbreaking Beauty

- Given a “name” ρ and a row and column i, j,

$$|\sigma, i, j\rangle = \sqrt{\frac{d_\sigma}{|G|}} \sum_g \sigma(g)_{ij}$$

- Miraculously, these form an orthogonal basis for $\mathbb{C}[G] :$

$$\sum_{\sigma \in \hat{G}} d^2_\sigma = |G|$$
Group Actions

- Given a state in $\mathbb{C}[G]$ and a group element g, we can apply various group actions:

$$ |x\rangle \rightarrow |xg\rangle \text{ or } |g^{-1}x\rangle \text{ or } |g^{-1}xg\rangle $$

- We can think of $\mathbb{C}[G]$ as a representation of G under any of these actions.

- Under (left or right) multiplication, the regular representation contains d_σ copies of each $\sigma \in \hat{G}$.
For most group families, the QFT can be carried out efficiently, in polylog(|G|) steps [Beals 1997; Høyer 1997; M., Rockmore, Russell 2004]

- **Weak sampling**: just the name σ
- **Strong sampling**: name, row and column σ, i, j in a basis of our choice (some bases may be much more informative than others)
- Intermediate: strong, but with a random basis
Fourier Sampling is Optimal

- The mixed state over (left) cosets
 \[\rho = \frac{1}{|G|} \sum_{c \in G} |cH\rangle \langle cH| \]

 is left G-invariant, hence block-diagonal.

- Measuring the irrep name (weak sampling) loses no coherence.

- Strong sampling is the only thing left to do!
For each irrep σ, we have a projection operator

$$\pi_H^\sigma = \frac{1}{|H|} \sum_{h \in H} \sigma(h)$$

The probability we observe σ is

$$\frac{d_\sigma |H| \text{ rk } \pi_H^\sigma}{|G|}$$

Compare with the Plancherel distribution

$$\frac{d_\sigma^2}{|G|}$$

($H = \{1\}$, the completely mixed state)
Weak Sampling Fails

- If $H = \{1, m\}$, we have $\left(\chi_{\sigma}(g) = \text{tr} \sigma(g) \right)$

$$\text{rk } \pi^\sigma_H = \frac{d_\sigma}{2} \left(1 + \frac{\chi_\sigma(m)}{d_\sigma} \right)$$

- In S_n, $\chi_\sigma(m)/d_\sigma$ is exponentially small, so the observed distribution is very close to Plancherel

Weak sampling fails [Hallgren, Russell, Ta-Shma 2000]

Random basis fails [Grigni, Schulman, Vazirani, Vazirani 2001]

But, strong is stronger for some G... [MRRS 2004]
Now for Strong Sampling

- But what about a basis of our choice? Given σ, we observe a basis vector \mathbf{b} with probability

$$\frac{\|\pi_H \mathbf{b}\|^2}{\text{rk } \pi_H}$$

- Here we have $\|\pi_H \mathbf{b}\|^2 = \frac{1}{2}(1 + \langle \mathbf{b}, m\mathbf{b} \rangle)$

- How much does $\langle \mathbf{b}, m\mathbf{b} \rangle$ vary with m?
Controlling the Variance

- Expectation of an irrep σ over m’s conjugates is

$$\text{Exp}_m \sigma(m) = \frac{\chi_\sigma(m)}{d_\sigma} \mathbb{1}$$

so $\text{Exp}_m \langle b, mb \rangle = \frac{\chi_\sigma(m)}{d_\sigma}$

- To turn the second moment into a first moment,

$$|\langle b, mb \rangle|^2 = \langle b \otimes b^*, m(b \otimes b^*) \rangle$$
Controlling the Variance

- Decompose $\sigma \otimes \sigma^*$ into irreducibles:

$$\sigma \otimes \sigma^* \cong \bigoplus_{\tau \in \hat{G}} a_\tau \tau$$

Then

$$\text{Var}_m \|\pi_H b\|^2 \leq \frac{1}{4} \sum_{\tau \in \hat{G}} \frac{\chi_\tau(m)}{d_\tau} \left\| \Pi_\tau^{\sigma \otimes \sigma^*} (b \otimes b^*) \right\|^2$$

- How much of $b \otimes b^*$ lies in low-dimensional τ?
Using simple counting arguments, we show that almost all of $b \otimes b^*$ lies in high-dimensional subspaces τ of $\sigma \otimes \sigma^*$.

Since $\chi_\tau(m)/d_\tau$ is exponentially small, the observed distribution on b for any basis is exponentially close to uniform.

No subexponential set of experiments on coset states can solve Graph Isomorphism.

[M., Russell, Schulman 2005]
Entangled Measurements

• For any group, there exists a measurement on the tensor product of coset states

\[\rho \otimes \cdots \otimes \rho \]

with \(k = \text{poly}(\log |G|) \) [Ettinger, Høyer, Knill 1999]

• What can we prove about entangled measurements?
Bounds on Multiregister Sampling

- Weak sample each register, observing

\[\sigma = \sigma_1 \otimes \cdots \otimes \sigma_k \]

- Given a subset \(I \) of the \(k \) registers, decompose that part of the tensor product:

\[\bigotimes_{i \in I} \sigma_i \cong \bigoplus_{\tau \in \widehat{G}} a^{I}_{\tau} \tau \]

- This group action multiplies these registers by \(g \) and leaves the others fixed.
Bounds on Multiregister Sampling

- Second moment: analogous to one register, consider \(\sigma \otimes \sigma^* \). Given subsets \(I \) and \(J \), define

\[
E^{I,J}(b) = \sum_{\tau \in \hat{G}} \frac{\chi_\tau(m)}{d_\tau} \left\| \Pi_{I,J}^{I,J}(b \otimes b^*) \right\|^2
\]

- For an arbitrary entangled basis, [M., Russell 2005]

\[
\text{Var}_m \left\| \Pi_H b \right\|^2 \leq \frac{1}{4k} \sum_{I,J \subseteq [k]: I, J \neq \emptyset} E^{I,J}(b)
\]
Bounds on Multiregister Sampling

- With some additional work, this general bound can be used to show that $\Omega(n \log n)$ registers are necessary for S_n [Hallgren, Rötteler, Sen; M., Russell]
- But what form might this measurement take?
- Note that each subset of the registers contributes some information...
Subset Sum and the Dihedral Group

- The HSP in the dihedral group D_n reduces to random cases of Subset Sum [Regev 2002]
- Leads to a $2^{O(\sqrt{\log n})}$-time and -register algorithm [Kuperberg 2003]
- Subset Sum gives the optimal multiregister measurement [Bacon, Childs, van Dam 2005]
More Abstractly...

- If \(H = \{1, m\} \), there is a missing harmonic:

\[
\sum_{h \in H} \pi(h) = 0
\]

- Weak sampling gives random two-dimensional irreps \(\sigma_j \); think of these as integers \(\pm j \).

- Tensor products: \(\sigma_j \otimes \sigma_k \cong \sigma_{j+k} \oplus \sigma_{j-k} \)

- Find subset that gives \(\sigma_0 \cong 1 \oplus \pi \).
Suppose H has a missing harmonic τ.

For each subset I, consider the subspace W^I_τ resulting from applying the group action to I. (In D_n, this flips the integers j in this subset.)

If the hidden subgroup is a conjugate of H, then the state is perpendicular to W^I_τ for all I.

How much of $\mathbb{C}[G^k]$ does this leave? What fraction is spanned by the W^I_τ?
Independent Subspaces

Say that two subspaces \(V, W \) of a space \(U \) are independent if, just as for random vectors in \(U \),

\[
\mathbb{E}_{v \in V} \left\| \Pi_W v \right\|^2 = \frac{\dim W}{\dim U}
\]

or equivalently

\[
\frac{\text{tr} \, \Pi_V \Pi_W}{\dim U} = \frac{\text{tr} \, \Pi_V}{\dim U} \frac{\text{tr} \, \Pi_W}{\dim U}
\]

- Being in \(V \) or \(W \) are “independent events.”
Each Subset Contributes

- For $I \neq J$, W^I_τ and W^J_τ are independent.

- Therefore, $W_\tau = \text{span}_I W^I_\tau$ is large:
 \[
 \frac{\dim W_\tau}{\dim \mathbb{C}[G^k]} \geq 1 - \frac{1}{1 + 2^k/|G|}
 \]

- If $k \geq \log_2 |G|$, probability of “some subset being in τ” is $\geq 1/2$ if the hidden subgroup is trivial, but is zero if it is a conjugate of H.

[M., Russell 2005]
Divide $\mathbb{C}[G^k]$ into subspaces; for each one, find a subset I for a large fraction of the completely mixed state is in W^I_T: e.g. $\sigma_0 \cong 1 \oplus \pi$ in D_n.

“Pretty Good Measurement” (i.e., Subset Sum for D_n) is optimal for Gel’fand pairs... [MR 2005]

...but it is not optimal for S_n [Childs]. What is? And, is it related to Subset Something?
The Hunt Continues

Beauty and Truth vs. The Adversary
Acknowledgments