The Planted Matching Problem

Cristopher Moore, Santa Fe Institute

Joint work with Mehrdad Moharrami (Michigan) and Jiaming Xu (Duke)

December 8, 2019
Planted problems: good solution + noise

Constraint satisfaction, optimization
Planted problems: good solution + noise

Constraint satisfaction, optimization
Generative models, Bayesian inference
Planted problems: good solution + noise

Constraint satisfaction, optimization
Generative models, Bayesian inference
Satisfying assignments, cliques, communities...
Planted problems: good solution + noise

Constraint satisfaction, optimization
Generative models, Bayesian inference
Satisfying assignments, cliques, communities...

Information-theoretic (a.k.a. statistical) and computational barriers
Planted problems: good solution + noise

Constraint satisfaction, optimization
Generative models, Bayesian inference
Satisfying assignments, cliques, communities...

Information-theoretic (a.k.a. statistical) and computational barriers
Statistical physics ⇒ conjectures, proofs, and algorithms
Planted matchings: particle tracking

Tracking particles advected by turbulent fluid flow

[Chertkov-Kroc-Krzakala-Vergassola-Zdeborová PNAS'10]

Goal: recover the underlying true one-to-one mapping of the particles
Flocks of birds, swimming microbes, ...
The planted assignment model

- A complete bipartite graph
- A hidden perfect matching M
- Edge weight $W_{ij} \sim \begin{cases} P & e \in M \\ Q & e \notin M \end{cases}$
- Goal: recover M from W

Our work:
- $P = \text{Exp}(\lambda)$
- $Q = \text{Exp}(\frac{1}{n})$ (mean $\frac{1}{\lambda}$ vs. n)

Minimum-weight matching \hat{M} is the Maximum Likelihood Estimator

How much does \hat{M} have in common with M?
The planted assignment model

- A complete bipartite graph
- A hidden perfect matching M
- Edge weight

\[W_{ij} \overset{\text{ind.}}{\sim} \begin{cases} P & e \in M \\ Q & e \notin M \end{cases} \]

- Goal: recover M from W

- Our work: $P = \text{Exp}(\lambda)$, $Q = \text{Exp}(1/n)$ (mean $1/\lambda$ vs. n)
The planted assignment model

- A complete bipartite graph
- A hidden perfect matching M
- Edge weight $W_{ij} \sim \begin{cases} \ P & e \in M \\ \ Q & e \notin M \end{cases}$
- Goal: recover M from W
- Our work: $P = \text{Exp}(\lambda)$, $Q = \text{Exp}(1/n)$ (mean $1/\lambda$ vs. n)
- Minimum-weight matching \widehat{M} is the Maximum Likelihood Estimator
The planted assignment model

- A complete bipartite graph
- A hidden perfect matching M
- Edge weight $W_{ij} \overset{\text{ind.}}{\sim} \begin{cases} P & e \in M \\ Q & e \notin M \end{cases}$
- Goal: recover M from W

- Our work: $P = \text{Exp}(\lambda)$, $Q = \text{Exp}(1/n)$ (mean $1/\lambda$ vs. n)
- Minimum-weight matching \hat{M} is the Maximum Likelihood Estimator
- How much does \hat{M} have in common with M?
The planted assignment model

- A complete bipartite graph
- A hidden perfect matching M
- Edge weight

\[W_{ij} \overset{\text{ind.}}{\sim} \begin{cases} P & e \in M \\ Q & e \notin M \end{cases} \]

- Goal: recover M from W

- Our work: $P = \text{Exp}(\lambda)$, $Q = \text{Exp}(1/n)$ (mean $1/\lambda$ vs. n)
- Minimum-weight matching \hat{M} is the Maximum Likelihood Estimator
- How much does \hat{M} have in common with M?
- A phase transition in λ, and exact results
Main result: phase transition at $\lambda = 4$

Theorem (Moharrami-M.-Xu ’19)

\[
\text{overlap: } \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\left| \hat{M} \cap M \right| \right] = \begin{cases}
1 & \text{if } \lambda \geq 4 \\
\alpha(\lambda) & \text{if } 0 < \lambda < 4
\end{cases}
\]

where $\alpha(\lambda) = 1 - 2 \int_{0}^{\infty} (1 - F(x))(1 - G(x)) V(x)W(x) \, dx < 1$,
Main result: phase transition at $\lambda = 4$

Theorem (Moharrami-M.-Xu ’19)

\[
\text{overlap: } \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[|\hat{M} \cap M| \right] = \begin{cases}
1 & \text{if } \lambda \geq 4 \\
\alpha(\lambda) & \text{if } 0 < \lambda < 4
\end{cases}
\]

where $\alpha(\lambda) = 1 - 2 \int_0^\infty (1 - F(x)) (1 - G(x)) V(x) W(x) \, dx < 1$,

and F, G, V, W is the unique solution to a system of ODEs:

\[
\begin{align*}
\dot{F} &= (1 - F)(1 - G)V \\
\dot{G} &= -(1 - F)(1 - G)W \\
\dot{V} &= \lambda (V - F) \\
\dot{W} &= -\lambda (W - G)
\end{align*}
\]

Boundary conditions: $F(x), V(x), G(-x), W(-x) \to \begin{cases}
1 & x \to +\infty \\
0 & x \to -\infty
\end{cases}$
Main result: phase transition at $\lambda = 4$

Theorem (Moharrami-M.-Xu ’19)

\[
\text{overlap: } \lim_{n \to \infty} \frac{1}{n} \mathbb{E}\left[\left|\hat{M} \cap M\right|\right] = \begin{cases}
1 & \text{if } \lambda \geq 4 \\
\alpha(\lambda) & \text{if } 0 < \lambda < 4
\end{cases}
\]

where \(\alpha(\lambda) = 1 - 2 \int_0^\infty (1 - F(x)) (1 - G(x)) V(x) W(x) \, dx < 1 \),

![Graph showing the overlap $\alpha(\lambda)$ vs λ]
Main result: phase transition at $\lambda = 4$

Theorem (Moharrami-M.-Xu ’19)

\[
\textbf{overlap: } \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\left| \hat{M} \cap M \right| \right] = \begin{cases}
1 & \text{if } \lambda \geq 4 \\
\alpha(\lambda) & \text{if } 0 < \lambda < 4
\end{cases}
\]

where $\alpha(\lambda) = 1 - 2 \int_0^\infty (1 - F(x)) (1 - G(x)) V(x) W(x) \, dx < 1$,

\begin{center}
\begin{tikzpicture}
\begin{axis}[
 xlabel=λ,
 ylabel=overlap $\alpha(\lambda)$,
 xmin=0, xmax=4,
 ymin=0, ymax=1.2,
 xtick={0,1,2,3,4},
 ytick={0,0.2,0.4,0.6,0.8,1.0},
]
\addplot[mark=*,red] coordinates {
(0,0)
(0.2,0.2)
(0.4,0.4)
(0.6,0.6)
(0.8,0.8)
(1,1)
(1.2,1)
};
\end{axis}
\end{tikzpicture}
\end{center}
When $\lambda \geq 4$: count augmenting cycles
When $\lambda \geq 4$: count augmenting cycles

- Probability that M' has lower total weight than M is

$$\mathbb{P}[\text{Erlang}(\ell, \lambda) \geq \text{Erlang}(\ell, 1/n)] \leq \left(\frac{\lambda n}{4}\right)^{-\ell}$$
When \(\lambda \geq 4 \): count augmenting cycles

- Probability that \(M' \) has lower total weight than \(M \) is

\[
\mathbb{P} [\text{Erlang}(\ell, \lambda) \geq \text{Erlang}(\ell, 1/n)] \leq \left(\frac{\lambda n}{4} \right)^{-\ell}
\]

- There are \(\binom{n}{\ell} \ell! \leq n^\ell e^{-\ell^2/2n} \) matchings \(M' \) with \(|M \triangle M'| = 2\ell \)
When $\lambda \geq 4$: count augmenting cycles

- Probability that M' has lower total weight than M is

$$P[\text{Erlang}(\ell, \lambda) \geq \text{Erlang}(\ell, 1/n)] \leq \left(\frac{\lambda n}{4}\right)^{-\ell}$$

- There are $\binom{n}{\ell} \ell! \leq n^\ell e^{-\ell^2/2n}$ matchings M' with $|M \triangle M'| = 2\ell$

 ⇒ Expected number of such M' is at most $(\lambda/4)^{-\ell} e^{-\ell^2/2n}$
When $\lambda \geq 4$: count augmenting cycles

- Probability that M' has lower total weight than M is

$$\mathbb{P}[\text{Erlang}(\ell, \lambda) \geq \text{Erlang}(\ell, 1/n)] \leq \left(\frac{\lambda n}{4}\right)^{-\ell}$$

- There are $\binom{n}{\ell} \ell! \leq n^\ell e^{-\ell^2/2n}$ matchings M' with $|M \triangle M'| = 2\ell$

 \Rightarrow Expected number of such M' is at most $(\lambda/4)^{-\ell} e^{-\ell^2/2n}$

 \Rightarrow Sum over ℓ: total probability a planted edge is in augmenting cycle is $o(1)$ if $\lambda \geq 4$
Warmup: the (un-planted) random assignment problem

- A complete bipartite graph
- Weights uniform in $[0, n]$ or $\text{Exp}(1/n)$
- Cost of minimum matching?

$$\lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\min_{\pi} \sum_{i=1}^{n} W_i \pi(i) \right] = \pi^2 = 1 + \frac{1}{4} + \frac{1}{9} + \cdots$$
Warmup: the (un-planted) random assignment problem

- A complete bipartite graph
- Weights uniform in [0, n] or Exp(1/n)
- Cost of minimum matching?

\[
\lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\min_{\pi} \sum_{i=1}^{n} W_{i,\pi(i)} \right] = \frac{\pi^2}{6} = 1 + \frac{1}{4} + \frac{1}{9} + \cdots
\]
Warmup: the (un-planted) random assignment problem

Cavity method: model as a tree [Mézard-Parisi '87, Aldous'00]
Warmup: the (un-planted) random assignment problem

Cavity method: model as a tree [Mézard-Parisi '87, Aldous'00]
Warmup: the (un-planted) random assignment problem

Cavity method: model as a tree [Mézard-Parisi ’87, Aldous’00]
Warmup: the (un-planted) random assignment problem

Cavity method: model as a tree [Mézard-Parisi '87, Aldous'00]

\[X_v \triangleq \text{cost of min matching on } T_v - \text{cost of min matching on } T_v \setminus \{v\} \]
Warmup: the (un-planted) random assignment problem

Cavity method: model as a tree [Mézard-Parisi '87, Aldous'00]

\[X_v \triangleq \text{cost of min matching on } T_v - \text{cost of min matching on } T_v \setminus \{v\} \]

sort edge weights \(W_{\emptyset,1}, W_{\emptyset,2}, \ldots \) from smallest to largest: arrivals \(\zeta_1, \zeta_2, \ldots \) of a Poisson process with rate 1
Warmup: the (un-planted) random assignment problem

Cavity method: model as a tree \([\text{Mézard-Parisi '87, Aldous'00}]

\[X_v \triangleq \text{cost of min matching on } T_v - \text{cost of min matching on } T_v \setminus \{v\} \]

sort edge weights \(W_{\emptyset,1}, W_{\emptyset,2}, \ldots\) from smallest to largest:

arrivals \(\zeta_1, \zeta_2, \ldots\) of a Poisson process with rate 1

\[X \overset{d}{=} \min_{i \geq 1} \{\zeta_i - X_i\} \]
From distributional to differential equations

\[X \overset{d}{=} \min \{ \zeta_i - X_i \} \] where \(\zeta_i \) are Poisson arrivals
$X \overset{d}{=} \min \{\zeta_i - X_i\}$ where ζ_i are Poisson arrivals

Generate pairs (ζ, x): two-dimensional Poisson process with density $f(x)$
From distributional to differential equations

\[X \overset{d}{=} \min \{ \zeta_i - X_i \} \text{ where } \zeta_i \text{ are Poisson arrivals} \]

Generate pairs \((\zeta, x)\): two-dimensional Poisson process with density \(f(x)\)

Define the cdf \(\bar{F}(x) = 1 - F(x) = \mathbb{P} [X > x] = \mathbb{P} [\forall i : \zeta_i - x > X_i]\)

\[
\bar{F}(x) = \exp \left(- \int_{-x}^{\infty} \bar{F}(t) \, dt \right) \quad \Rightarrow \quad \frac{dF(x)}{dx} = F(x)F(-x)
\]
\[
\frac{dF(x)}{dx} = F(x)F(-x)
\]
\[
\frac{dF(x)}{dx} = F(x)F(-x)
\]

\[
F(x) = \frac{e^x}{1+e^x} \quad \text{or} \quad f(x) = \frac{1}{(e^{x/2} + e^{-x/2})^2}
\]
From distributional to differential equations, cont’d

\[
\frac{dF(x)}{dx} = F(x)F(-x)
\]

\[
F(x) = \frac{e^x}{1 + e^x} \quad \text{or} \quad f(x) = \frac{1}{(e^{x/2} + e^{-x/2})^2}
\]
\[\frac{dF(x)}{dx} = F(x)F(-x) \]

\[F(x) = \frac{e^x}{1 + e^x} \quad \text{or} \quad f(x) = \frac{1}{(e^{x/2} + e^{-x/2})^2} \]

Contribution of a single edge:

\[\mathbb{E} \left[W \mathbf{1}[W < X + X'] \right] \]

\[= \frac{1}{4} \text{Var}[X + X'] = \frac{1}{2} \text{Var}[X] = \frac{\pi^2}{6} \]
Now with planted edges

Partner in planted matching is either parent or child 0, other children sorted 1, 2, 3, ...
Now with planted edges

Partner in planted matching is either parent or child \(0 \), other children sorted \(1, 2, 3, \ldots \)

\[
X_v \triangleq \text{cost of min matching in } T_v - \text{cost of min matching on } T_v \setminus \{v\}
\]

Recursion:

\[
X_\emptyset = \min \left\{ W_{\emptyset,0} - X_0, \min_{i \geq 1} \{ W_{\emptyset,i} - X_i \} \right\}
\]

\[
X_0 = \min_{i \geq 1} \{ W_{0,0i} - X_{0i} \}
\]
Now with planted edges

Partner in planted matching is either parent or child 0, other children sorted 1, 2, 3, ...

\[X_v \triangleq \text{cost of min matching in } T_v - \text{cost of min matching on } T_v \setminus \{v\} \]

Recursion:

\[X_\emptyset = \min \left\{ W_{\emptyset,0} - X_0, \min_{i \geq 1} \{ W_{\emptyset,i} - X_i \} \right\} \]

\[X_0 = \min_{i \geq 1} \{ W_{0,0i} - X_{0i} \} \]

\[Y \overset{d}{=} \min \{ \eta - Z, Z' \} \]

\[Z \overset{d}{=} \min_i \{ \zeta_i - Y_i \} \]
From distributional to differential equations, redux

\[
Y \overset{d}{=} \min \{ \eta - Z, Z' \}
\]

\[
Z \overset{d}{=} \min \{ \zeta_i - Y_i \}_{i=1}^{\infty}
\]

where $\eta \sim \text{Exp}(\lambda)$ and ζ_i are Poisson arrivals
From distributional to differential equations, redux

\[Y \overset{d}{=} \min \{ \eta - Z, Z' \} \]

\[Z \overset{d}{=} \min \{ \zeta_i - Y_i \}_{i=1}^{\infty} \]

where \(\eta \sim \text{Exp}(\lambda) \) and \(\zeta_i \) are Poisson arrivals

\[F(x) = \mathbb{P}[Z < x], \quad G(x) = F(-x), \quad V(x) = \mathbb{E}[F(x + \eta)], \quad W(x) = V(-x) \]
From distributional to differential equations, redux

\[
Y \overset{d}{=} \min \{\eta - Z, Z'\} \\
Z \overset{d}{=} \min \{\zeta_i - Y_i\}_{i=1}^\infty
\]

where \(\eta \sim \text{Exp}(\lambda)\) and \(\zeta_i\) are Poisson arrivals

\[
F(x) = \mathbb{P}[Z < x], \ G(x) = F(-x), \ V(x) = \mathbb{E}[F(x + \eta)], \ W(x) = V(-x)
\]

\[
\dot{F} = (1 - F)(1 - G)V \\
\dot{G} = -(1 - F)(1 - G)W \\
\dot{V} = \lambda(V - F) \\
\dot{W} = -\lambda(W - G)
\]

Boundary conditions:

\[
F(+\infty) = V(+\infty) = 1, \ F(-\infty) = V(-\infty) = 0
\]
From distributional to differential equations, redux

\[
Y \overset{d}{=} \min \{\eta - Z, Z'\}
\]

\[
Z \overset{d}{=} \min \{\zeta_i - Y_i\}_{i=1}^\infty
\]

where \(\eta \sim \text{Exp}(\lambda) \) and \(\zeta_i \) are Poisson arrivals

\[
F(x) = \mathbb{P}[Z < x], \quad G(x) = F(-x), \quad V(x) = \mathbb{E}[F(x + \eta)], \quad W(x) = V(-x)
\]

\[
\dot{F} = (1 - F)(1 - G)V
\]

\[
\dot{G} = -(1 - F)(1 - G)W
\]

\[
\dot{V} = \lambda(V - F)
\]

\[
\dot{W} = -\lambda(W - G)
\]

\(\dot{V} \) and \(\dot{W} \) from \(\eta \sim \text{Exp}(\lambda) \), integration by parts
From distributional to differential equations, redux

\[Y \overset{d}{=} \min \{ \eta - Z, Z' \} \]
\[Z \overset{d}{=} \min \{ \zeta_i - Y_i \}_{i=1}^{\infty} \]

where \(\eta \sim \text{Exp}(\lambda) \) and \(\zeta_i \) are Poisson arrivals

\[F(x) = \mathbb{P}[Z < x], \ G(x) = F(-x), \ V(x) = \mathbb{E}[F(x + \eta)], \ W(x) = V(-x) \]

\[\dot{F} = (1 - F)(1 - G)V \]
\[\dot{G} = -(1 - F)(1 - G)W \]
\[\dot{V} = \lambda(V - F) \]
\[\dot{W} = -\lambda(W - G) \]

\(\dot{V} \) and \(\dot{W} \) from \(\eta \sim \text{Exp}(\lambda) \), integration by parts

Boundary conditions: \(F(+\infty) = V(+\infty) = 1, \ F(-\infty) = V(-\infty) = 0 \)
No solution for $\lambda \geq 4$

At least no sensible one...
No solution for $\lambda \geq 4$

At least no sensible one...
Want $F(\infty) = V(\infty) = 1$. But...
No solution for $\lambda \geq 4$

Conservation law: $FW + GV - VW = 0 \Rightarrow V(0) = 2F(0)$
No solution for $\lambda \geq 4$

Conservation law: $FW + GV - VW = 0 \Rightarrow V(0) = 2F(0)$
Let $U(x) = F(x)/V(x)$. Then $U(0) = 1/2$, want $U(+\infty) = 1 \ldots$
No solution for $\lambda \geq 4$

Conservation law: $FW + GV - VW = 0 \Rightarrow V(0) = 2F(0)$

Let $U(x) = F(x)/V(x)$. Then $U(0) = 1/2$, want $U(+\infty) = 1$.

\[\dot{U} = -\lambda U(1 - U) + (1 - F)(1 - G) \leq -\lambda U(1 - U) + 1 \]
No solution for $\lambda \geq 4$

Conservation law: $FW + GV - VW = 0 \Rightarrow V(0) = 2F(0)$

Let $U(x) = F(x)/V(x)$. Then $U(0) = 1/2$, want $U(+\infty) = 1$...

\[\dot{U} = -\lambda U(1-U) + (1-F)(1-G) \leq -\lambda U(1-U) + 1 \]

If $\lambda \geq 4$, $\dot{U}(1/2) \leq 0$
No solution for $\lambda \geq 4$

Conservation law: $FW + GV - VW = 0 \Rightarrow V(0) = 2F(0)$

Let $U(x) = F(x)/V(x)$. Then $U(0) = 1/2$, want $U(\infty) = 1$.

\[\dot{U} = -\lambda U(1 - U) + (1 - F)(1 - G) \leq -\lambda U(1 - U) + 1 \]

If $\lambda \geq 4$, $\dot{U}(1/2) \leq 0$

No fixed distribution on finite values: cost of un-planted edge is $+\infty$\
\Rightarrow almost perfect recovery
A unique solution when $\lambda < 4$

$(F, G, V, W) \iff (U, V, W)$: three-dimensional dynamical system

\[
\begin{align*}
\dot{U} &= -\lambda U(1 - U) + (1 - UV)(1 - (1 - U)W) \\
\dot{V} &= \lambda V(1 - U) \\
\dot{W} &= \lambda WU
\end{align*}
\]

Initial conditions: \(U(0) = \frac{1}{2}, V(0) = W(0) = \epsilon\)
A unique solution when $\lambda < 4$

$(F, G, V, W) \iff (U, V, W)$: three-dimensional dynamical system

\[
\begin{align*}
\dot{U} &= -\lambda U(1 - U) + (1 - UV)(1 - (1 - U)W) \\
\dot{V} &= \lambda V(1 - U) \\
\dot{W} &= \lambda WU \\
\end{align*}
\]

Initial conditions: $U(0) = \frac{1}{2}$, $V(0) = W(0) = \epsilon$

Lemma

If $\lambda < 4$ there is a unique $\epsilon_0 \in (0, 1)$ such that

- If $\epsilon \in [0, \epsilon_0)$, $U(x) \to +\infty$
- If $\epsilon = \epsilon_0$, $U(x) \to 1$ and $V(x) \to 1$
- If $\epsilon \in (\epsilon_0, 1]$, $V(x) \to +\infty$
A unique solution when $\lambda < 4$

Geometric interpretation: $(U = 1, V = 1, W = 0)$ is a saddle point
If $V(0) = W(0) = \epsilon_0$ we approach the saddle along its unstable manifold

This gives cdfs $F, V \rightarrow 1$ of the unique fixed point distribution
A numerical experiment

\[\lambda = 2.5, \text{ population dynamics with } N = 10^6 \]
Finally, computing the overlap for $\lambda < 4$
Finally, computing the overlap for $\lambda < 4$

$$\alpha(\lambda) = \mathbb{P}[\eta < Z + Z'] = 1 - \mathbb{E}_\eta \int_{-\infty}^{+\infty} f(x)F(\eta-x)\,dx$$

$$= 1 - \int_{-\infty}^{+\infty} f(x)\mathbb{E}_\eta F(\eta-x)\,dx$$

$$= 1 - \int_{-\infty}^{+\infty} (1 - F(x))(1 - G(x))V(x)W(x)\,dx$$

$$= 1 - 2 \int_{0}^{+\infty} (1 - F(x))(1 - G(x))V(x)W(x)\,dx$$
• \hat{M} only depends on weights \Rightarrow symmetry in the joint distribution of weights and matching

• Vertex-transitive involutions on $K_{n,n}$ or infinite tree T_∞

• A random matching is *involution invariant* if it has these symmetries

• We have constructed an involution invariant M_{opt} on T_∞ and computed its cost and overlap
Proving it: Local weak convergence (Aldous 1992, 2001)

• Easy: any invariant sequence \(\{M_n\} \) of matchings on \(K_{n,n} \) has a subsequence \(\{M_{n_j}\} \) that converges to a (possibly random) invariant matching on \(T_\infty \).
Proving it: Local weak convergence (Aldous 1992, 2001)

• Easy: any invariant sequence \(\{M_n\} \) of matchings on \(K_{n,n} \) has a subsequence \(\{M_{n_j}\} \) that converges to a (possibly random) invariant matching on \(T_\infty \)
 ▶ Local treelikeness of light edges, compactness

• Hard: for any invariant matching \(M_\infty \) there is a sequence \(\{M_n: n \to \infty\} \) that converges to \(M_\infty \)
 ▶ Martingale convergence
 ▶ Almost-doubly-stochastic matrix
 ▶ Almost-perfect matching on \(K_{n,n} \), can fix to make a perfect matching

• Uniqueness: any invariant matching \(M'_\infty \) that differs from \(M_{opt} \) with positive probability has strictly greater cost
 ▶ By invariance, \(M'_\infty \) and \(M_{opt} \) differ at the root
 ▶ \(M'_\infty \) often chooses the wrong partner for \(\emptyset \)
 ▶ Right partner given by recursion ⇒ differential equations

• Together these imply \(\lim_{n \to \infty} \text{overlap}(\hat{M}_n) = \text{overlap}(\hat{M}_\infty) \)
Proving it: Local weak convergence (Aldous 1992, 2001)

• Easy: any invariant sequence \(\{M_n\} \) of matchings on \(K_{n,n} \) has a subsequence \(\{M_{n_j}\} \) that converges to a (possibly random) invariant matching on \(T_\infty \)
 ▶ Local treelikeness of light edges, compactness

• Hard: for any invariant matching \(M_\infty \) there is a sequence \(\{M_n : n \to \infty\} \) that converges to \(M_\infty \)
Proving it: Local weak convergence (Aldous 1992, 2001)

• Easy: any invariant sequence \(\{M_n\} \) of matchings on \(K_{n,n} \) has a subsequence \(\{M_{n_j}\} \) that converges to a (possibly random) invariant matching on \(T_\infty \)
 ➤ Local treelikeness of light edges, compactness

• Hard: for any invariant matching \(M_\infty \) there is a sequence \(\{M_n : n \to \infty\} \) that converges to \(M_\infty \)
 ➤ Martingale convergence
Proving it: Local weak convergence (Aldous 1992, 2001)

- Easy: any invariant sequence \(\{M_n\} \) of matchings on \(K_{n,n} \) has a subsequence \(\{M_{n_j}\} \) that converges to a (possibly random) invariant matching on \(T_\infty \)
 - Local treelikeness of light edges, compactness

- Hard: for any invariant matching \(M_\infty \) there is a sequence \(\{M_n : n \to \infty\} \) that converges to \(M_\infty \)
 - Martingale convergence
 - Almost-doubly-stochastic matrix
Proving it: Local weak convergence (Aldous 1992, 2001)

- **Easy:** any invariant sequence \(\{M_n\} \) of matchings on \(K_{n,n} \) has a subsequence \(\{M_{n_j}\} \) that converges to a (possibly random) invariant matching on \(T_\infty \)
 - Local treelikeness of light edges, compactness

- **Hard:** for any invariant matching \(M_\infty \) there is a sequence \(\{M_n : n \to \infty\} \) that converges to \(M_\infty \)
 - Martingale convergence
 - Almost-doubly-stochastic matrix
 - Almost-perfect matching on \(K_{n,n} \), can fix to make a perfect matching
Proving it: Local weak convergence (Aldous 1992, 2001)

- **Easy:** any invariant sequence \(\{M_n\} \) of matchings on \(K_{n,n} \) has a subsequence \(\{M_{n_j}\} \) that converges to a (possibly random) invariant matching on \(T_\infty \)
 - Local treelikeness of light edges, compactness

- **Hard:** for any invariant matching \(M_\infty \) there is a sequence \(\{M_n : n \to \infty\} \) that converges to \(M_\infty \)
 - Martingale convergence
 - Almost-doubly-stochastic matrix
 - Almost-perfect matching on \(K_{n,n} \), can fix to make a perfect matching

- **Uniqueness:** any invariant matching \(M'_\infty \) that differs from \(M_{\text{opt}} \) with positive probability has strictly greater cost
Proving it: Local weak convergence (Aldous 1992, 2001)

- **Easy**: any invariant sequence \(\{M_n\} \) of matchings on \(K_{n,n} \) has a subsequence \(\{M_{n_j}\} \) that converges to a (possibly random) invariant matching on \(T_\infty \)
 - Local treelikeness of light edges, compactness
- **Hard**: for any invariant matching \(M_\infty \) there is a sequence \(\{M_n : n \to \infty\} \) that converges to \(M_\infty \)
 - Martingale convergence
 - Almost-doubly-stochastic matrix
 - Almost-perfect matching on \(K_{n,n} \), can fix to make a perfect matching

- **Uniqueness**: any invariant matching \(M'_\infty \) that differs from \(M_{\text{opt}} \) with positive probability has strictly greater cost
 - By invariance, \(M'_\infty \) and \(M_{\text{opt}} \) differ at the root
• Easy: any invariant sequence \(\{M_n\} \) of matchings on \(K_{n,n} \) has a subsequence \(\{M_{n_j}\} \) that converges to a (possibly random) invariant matching on \(T_\infty \)
 ▶ Local treelikeness of light edges, compactness

• Hard: for any invariant matching \(M_\infty \) there is a sequence \(\{M_n : n \to \infty\} \) that converges to \(M_\infty \)
 ▶ Martingale convergence
 ▶ Almost-doubly-stochastic matrix
 ▶ Almost-perfect matching on \(K_{n,n} \), can fix to make a perfect matching

• Uniqueness: any invariant matching \(M'_\infty \) that differs from \(M_{\text{opt}} \) with positive probability has strictly greater cost
 ▶ By invariance, \(M'_\infty \) and \(M_{\text{opt}} \) differ at the root
 ▶ \(M'_\infty \) often chooses the wrong partner for \(\emptyset \)
Proving it: Local weak convergence (Aldous 1992, 2001)

• Easy: any invariant sequence \(\{M_n\} \) of matchings on \(K_{n,n} \) has a subsequence \(\{M_{n_j}\} \) that converges to a (possibly random) invariant matching on \(T_\infty \)
 ▶ Local treelikeness of light edges, compactness

• Hard: for any invariant matching \(M_\infty \) there is a sequence \(\{M_n : n \to \infty\} \) that converges to \(M_\infty \)
 ▶ Martingale convergence
 ▶ Almost-doubly-stochastic matrix
 ▶ Almost-perfect matching on \(K_{n,n} \), can fix to make a perfect matching

• Uniqueness: any invariant matching \(M'_\infty \) that differs from \(M_{opt} \) with positive probability has strictly greater cost
 ▶ By invariance, \(M'_\infty \) and \(M_{opt} \) differ at the root
 ▶ \(M'_\infty \) often chooses the wrong partner for \(\emptyset \)
 ▶ Right partner given by recursion \(\Rightarrow \) differential equations
Proving it: Local weak convergence (Aldous 1992, 2001)

- Easy: any invariant sequence \(\{M_n\} \) of matchings on \(K_{n,n} \) has a subsequence \(\{M_{n_j}\} \) that converges to a (possibly random) invariant matching on \(T_\infty \)
 - Local treelikeness of light edges, compactness

- Hard: for any invariant matching \(M_\infty \) there is a sequence \(\{M_n \colon n \to \infty\} \) that converges to \(M_\infty \)
 - Martingale convergence
 - Almost-doubly-stochastic matrix
 - Almost-perfect matching on \(K_{n,n} \), can fix to make a perfect matching

- Uniqueness: any invariant matching \(M'_\infty \) that differs from \(M_{opt} \) with positive probability has strictly greater cost
 - By invariance, \(M'_\infty \) and \(M_{opt} \) differ at the root
 - \(M'_\infty \) often chooses the wrong partner for \(\emptyset \)
 - Right partner given by recursion \(\Rightarrow \) differential equations

- Together these imply \(\lim_{n \to \infty} \text{overlap}(\hat{M}_n) = \text{overlap}(\hat{M}_\infty) \)
Open questions

1. Order of the phase transition?
 - Overlap is continuous, and so is its derivative.
 - Appears to be third or higher.

2. Concentration of the overlap?
 - We computed its expectation.

3. Information-theoretically optimal recovery?
 - Gibbs sampling, posterior marginals.

4. Distributions other than $\eta \sim \text{Exp}(\lambda)$?
 - Distributional equations rarely collapse to ODEs.

5. Spatial structure (particle tracking)?

6. Other planted structures: spanning trees, traveling salespeople?
Open questions

1. Order of the phase transition?
 - Overlap is continuous, and so is its derivative
 - Appears to be third or higher
Open questions

1. Order of the phase transition?
 - Overlap is continuous, and so is its derivative
 - Appears to be third or higher

2. Concentration of the overlap?
 - We computed its expectation
Open questions

1. Order of the phase transition?
 - Overlap is continuous, and so is its derivative
 - Appears to be third or higher

2. Concentration of the overlap?
 - We computed its expectation

3. Information-theoretically optimal recovery?
 - Gibbs sampling, posterior marginals

4. Distributions other than $\eta \sim \text{Exp}(\lambda)$?
 - Distributional equations rarely collapse to ODEs

5. Spatial structure (particle tracking)?

6. Other planted structures: spanning trees, traveling salespeople?
Open questions

1. Order of the phase transition?
 - Overlap is continuous, and so is its derivative
 - Appears to be third or higher

2. Concentration of the overlap?
 - We computed its expectation

3. Information-theoretically optimal recovery?
 - Gibbs sampling, posterior marginals

4. Distributions other than $\eta \sim \text{Exp}(\lambda)$?
 - Distributional equations rarely collapse to ODEs
Open questions

1. Order of the phase transition?
 - Overlap is continuous, and so is its derivative
 - Appears to be third or higher

2. Concentration of the overlap?
 - We computed its expectation

3. Information-theoretically optimal recovery?
 - Gibbs sampling, posterior marginals

4. Distributions other than $\eta \sim \text{Exp}(\lambda)$?
 - Distributional equations rarely collapse to ODEs

5. Spatial structure (particle tracking)?
Open questions

1. Order of the phase transition?
 - Overlap is continuous, and so is its derivative
 - Appears to be third or higher

2. Concentration of the overlap?
 - We computed its expectation

3. Information-theoretically optimal recovery?
 - Gibbs sampling, posterior marginals

4. Distributions other than $\eta \sim \text{Exp}(\lambda)$?
 - Distributional equations rarely collapse to ODEs

5. Spatial structure (particle tracking)?

6. Other planted structures: spanning trees, traveling salespeople?
To put it bluntly: this book rocks! It somehow manages to combine the fun of a popular book with the intellectual heft of a textbook.

Scott Aaronson, UT Austin

This is, simply put, the best-written book on the theory of computation I have ever read; one of the best-written mathematical books I have ever read, period.

Cosma Shalizi, Carnegie Mellon

A creative, insightful, and accessible introduction to the theory of computing, written with a keen eye toward the frontiers of the field and a vivid enthusiasm for the subject matter.

Jon Kleinberg, Cornell