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1 Introduction

The classical tools of general equilibrium theory are convexity and general topology.
One of Debreu’s lasting contributions has been to show how the tools of differential
topology may serve to yield more refined information about equilibrium. In par-
ticular, Debreu (1970) showed that differential topology could provide a rigorous
formalization of “counting equations and unknowns” to provide a satisfactory result
on the determinacy of equilibrium.

Debreu required that preferences be representable by C2 utility functions with
non-vanishing gradients and that indifference surfaces have non-vanishing curvature.
Following Debreu, a natural question to ask is: Are there other interesting classes
of preferences (or demands) exhibiting regularity of behavior sufficient to guarantee
the generic local determinacy of equilibrium prices? The first results in this direc-
tion were obtained by Rader (1972, 1973), who showed that generic finiteness of
the equilibrium price set was a consequence of demand being differentiable almost
everywhere and satisfying condition N : that the image of a null set is null. Rader
also gave conditions on preferences sufficient to generate demand meeting these hy-
potheses; a further set of sufficient conditions was developed in a later paper (1979).
The concave-utility requirement of Rader (1973) has only recently been relaxed to
local concavifiability of the preference relation, by Pascoa and Werlang (1989).

The work reported here extends the work of Debreu in a different direction. Its
motivation comes from two sources. The first is a remark made by Rader at an
NBER Conference in the 1970’s about the nature of demand when preferences are
analytic. The second is the work of Blume and Zame (1989) and Schanuel, Simon and
Zame (forthcoming) on the applications of algebraic geometry in non-cooperative
game theory. When asked about the potential applications of the methods of those
papers to general equilibrium theory, our response was to be skeptical because the
required hypotheses seemed to be so strong. However, we later realized that these
algebraic-geometric methods could in fact be extended to a much wider class of
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preferences than we had previously thought (roughly, the piecewise analytic pref-
erences), and that the strength of these assumptions bought many compensations.
Our central result is that, for preferences in this class, generically in endowments,
the equilibrium set is finite and depends nicely on endowments. We allow for flats
and kinks of indifference surfaces, we make no curvature requirements, and we allow
for equilibria on the boundary of the price simplex. Moreover, our conclusions are
somewhat stronger than those in the smooth case in that they yield more structure
on the exceptional set of endowments.

The classes of preferences we consider are those with utility representations that
are semi-algebraic (roughly, piecewise algebraic) and finitely sub-analytic (roughly,
piecewise analytic); precise definitions are given in Section 2. Most of the familiar
preferences used in applications have representations that are finitely sub-analytic
on the relevant portions of their domain: Cobb-Douglas, logarithmic, exponential,
CES, HARA, piecewise-linear. However our methods, which are those of real alge-
braic geometry and mathematical logic, apply potentially to other classes of pref-
erences. For our purposes, the crucial property of preferences is that their graphs
belong to an O-minimal Tarski system containing the graphs of addition and mul-
tiplication (again, Section 2 provides a precise definition); the semi-algebraic sets
and the finitely sub-analytic sets comprise the known examples. Once we know that
preferences belong to such a system, the key properties of demand and the local
finiteness of equilibrium follow from a few basic properties shared by all such sys-
tems. It seems preferable, therefore, to present the arguments in the somewhat more
abstract setting of O-minimal Tarski systems rather than to carry around the excess
baggage that comes from assuming that preferences are specifically semi-algebraic
or finitely sub-analytic.

Section 2 contains the relevant mathematical background, including definitions
and a summary of results about O-minimal Tarski systems, including the family of
semi-algebraic sets and the family of finitely sub-analytic sets. Section 3 discusses
preferences and demands. The local finiteness result and its proof are found in
Section 4.

2 Mathematical Background

In this Section we set out, following van den Dries (1986), the basic properties of
O-minimal Tarski systems. Our goal is to delimit a class of functions; we proceed,
however, by delimiting a class of sets. This may seem less strange if we keep in mind
that every property of a function f : R→ R can be expressed in terms of its graph:
f is measurable if and only if its graph is a measurable set, f is smooth if and only
if its graph is a smooth manifold, etc.

A Tarski system is a family S = {Sn} such that:

1. For each n, Sn is a Boolean algebra1 of subsets of Rn.

2. If X ∈ Sn, then R×X ∈ Sn+1 and X ×R ∈ Sn+1.

1That is, Sn contains ∅ and Rn and is closed under formation of complements, finite unions,
and finite intersections.
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3. For each n, Dn = {(x1, . . . , xn) : x1 = xn} ∈ Sn.

4. If X ∈ Sn and π : Rn → Rn−1 is the projection onto the first n−1 coordinates,
then π(X) ∈ Sn−1.

A Tarski system S is O-minimal if, in addition:

5. It contains the graph of the less than relation: L = {(x, y) : x < y} ∈ S2.

6. For each r ∈ R the singleton {r} belongs to S1.

7. Every set in S1 is a finite union of intervals and points.

It should be emphasized that a Tarski system is a system—that its properties achieve
much of their bite in conjunction with each other. A simple example may make this
point. Let B ∈ S2 and let Bs be the symmetrically reversed set: Bs = {(x, y) :
(y, x) ∈ B}. Property 2 guarantees that R × B ∈ S3. Since properties 3 and 1
guarantee thatD3 ∈ S3 and S3 is a Boolean algebra, it follows that (R×B)∩D3 ∈ S3.
Since Bs is the projection of (R×B)∩D3 into the first two coordinates, we conclude
from property 4 that Bs ∈ S2.

To see the additional bite of O-minimality, observe that we may build a Tarski
system by beginning with an arbitrary family {Tn}, adjoining the diagonal subsets,
and closing under Boolean operations, products, and projections. However, such a
process may already lead to a family which violates property 7. For instance, if we
begin with the singletons in R and the single additional set A = {(x, y) : y =
sinx} ⊂ R2 (the graph of the sine function), we must include R × {0} ⊂ R2, and
A∩ (R×{0}), and the image of A∩ (R×{0}) under the first coordinate projection.
But this last set is precisely the set of zeroes of the sine function, which is not a
finite union of points and intervals.

If S is an O-minimal Tarski system, it is convenient to say that a set X belongs to
S or X is an S-set if X ∈ Sn for some n. We say that a function (or correspondence)
f : A → B belongs to S or f is an S-function if the graph of f belongs to S.2 It
is useful to note that the inverse correspondence of every function belonging to S
again belongs to S. The simple proof follows along the same lines as the coordinate-
reversal example above.

For our purposes, we shall mainly be interested in O-minimal Tarski systems
which contain (the graphs of) addition and multiplication; i.e.,

8. A = {(x, y, z) : z = x+ y} ∈ S3.

9. M = {(x, y, z) : z = xy} ∈ S3.

Two O-minimal Tarski systems are well known: The polyhedral (or piecewise
linear) sets satisfy all the above properties but property 9, while the semi-algebraic
sets satisfy all nine properties.

2Note that the domain of f is the projection of the graph of f , and so belongs automatically
to S whenever f does.
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A subset of Rn is polyhedral if it is a finite union of sets defined by linear
equalities and inequalities; i.e., if it is a finite union of sets of the form
{x : λi(x) = αi, µj(x) < βj, 1 ≤ i ≤ N, 1 ≤ j ≤ M}, where the αi
and βj are real numbers, and the λi and µj are linear functionals.

A subset of Rn is semi-algebraic if it is a finite union of sets defined by
polynomial equalities and inequalities; i.e., if it is a finite union of sets of the
form {x : pi(x) = αi, qj(x) < βj, 1 ≤ i ≤M, 1 ≤ j ≤ N}, where pi and
qj are polynomials.

It is easy to see that the polyhedral sets form an O-minimal Tarski system, and
that they are contained in every O-minimal Tarski system satisfying property 8.
(Of course they themselves do not satisfy property 9.) The polyhedral functions are
precisely the familiar piecewise linear functions.

The semi-algebraic sets form the smallest O-minimal Tarski system satisfying
properties 8 and 9. All of the defining properties of O-minimal Tarski systems ex-
cept for property 4 are easily verified for the family of semi-algebraic sets. The fourth
property is a consequence of a deep theorem of logic, the Tarski-Seidenberg Theorem.
The semi-algebraic functions include the piecewise linear functions, all the familiar
algebraic functions (polynomials, rational functions, roots, etc.), and their compo-
sitions, algebraic combinations, and their derivatives; but not the transcendental
functions such as the exponential function, the logarithm and the trigonometric
functions, and indefinite integrals of semi-algebraic functions.

A larger O-minimal Tarski system was discovered by van den Dries (1986), relying
on the work of Lojasiewicz (1965) and Gabrielov (1968): the finitely sub-analytic
sets. To define this family, we must first define semi-analytic sets and sub-analytic
sets.

A subset X ⊂ Rn is semi-analytic if for each y ∈ Rn (not just y ∈ X) there is
an open neighborhood U of y such that U∩X is the finite union of sets defined
by real analytic inequalities and inequalities; i.e., U ∩X is a finite union of
sets of the form {x : fi(x) = αi, gj(x) < βj, 1 ≤ i ≤ M, 1 ≤ j ≤ N},
where fi and gj are real analytic functions.

A subset X ⊂ Rn is sub-analytic if for each y ∈ Rn (not just y ∈ X) there
is an open neighborhood V of y and a bounded semi-analytic set Y ⊂ Rn+m

such that V ∩ X is the image of Y under the projection onto the first n
coordinates.

A subset X ⊂ Rn is finitely sub-analytic if it is the image under the map

(x1, . . . , xn) 7→



 x1√
1 + x2

1

, . . . ,
xn√

1 + x2
n





of a sub-analytic subset of Rn.

Of course, semi-algebraic sets and functions are finitely sub-analytic, but many
transcendental functions are finitely sub-analytic but not semi-algebraic, including
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the restrictions of the exponential function, the logarithm and the trigonometric
functions to compact subsets of their domains. Compositions, algebraic combina-
tions, and derivatives of finitely sub-analytic functions are finitely sub-analytic, but
indefinite integrals are not. Neither are the exponential function, the logarithm and
the trigonometric functions on their entire domains.

For our purposes, the crucial properties of O-minimal Tarski systems are the
various finiteness properties (discussed below), and the fact that O-minimal Tarski
systems are closed under definability. To see what this means, consider an O-minimal
Tarski system S and a set X ∈ Sn. The set

Y = {(x1, . . . , xn−1) : ∃xn (x1, . . . , xn−1, xn) ∈ X}

is the projection of X onto its first n − 1 components, and thus belongs to Sn−1.
Similarly, the set

Z = {(x1, . . . , xn−1) : ∀xn (x1, . . . , xn−1, xn) ∈ X}

is the complement of the projection of the complement of X, and thus also belongs
to Sn−1. In like manner, if F is a first order formula involving the free variables
x1 through xn−1, any finite number of quantified variables, and sets in S, then it is
a finite string of conjunctions and disjunctions of expressions such as those in the
definitions of Y and Z and their negations. Negation corresponds to set comple-
mentation, conjunction corresponds to intersection and disjunction corresponds to
union, so the fact that S is a Boolean Algebra (property 1) implies that the set

{(x1, . . . , xn−1) : F (x1, . . . , xn−1, xn) is true}

is an element of S.
At this point, closure under definability might seem to be an obscure property,

but the fact that the O-minimal Tarski systems we are interested in contain (the
graphs of) familiar relations and functions, including =, <, + and −, make it quite
powerful.

To give a simple example of the implications of closure under definability, let S
be any O-minimal Tarski system that contains addition and scalar multiplication,
and let X be any set belonging to S; we show that the closure clX of X also belongs
to S. To see this, let us write ‖w‖ =

∑
n |wn|. Then the closure of X is:

clX = {y ∈ Rn : ∀ε > 0, ∃x ∈ X, ‖x− y‖ < ε}

On the face of it, the expression that defines clX is not a formula in the sense
discussed above; however, it may easily be expanded into such a formula. Let π
denote the projection from R2 onto the first coordinate. For any X ∈ S2, let Xs

denote the symmetric reversal of X, and recall that L is the graph of the less-than
relation. Note first that the sets of non-negative real numbers, non-positive real
numbers, and positive real numbers are all S-sets. This is trivially true for the
systems of semi-algebraic and finitely sub-analytic sets. However, it can be shown
to be true for all O-minimal Tarski systems satisfying properties 1 through 6. For
instance:

R+ = {x : 0 ≤ x} = π

(
(L ∩ ({0} ×R))s

)
∪ {0}
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Let R0 denote the set {0} × R. Property 6 implies that the set {0} is an S-set.
Property 2 then implies that R0 is an S-set. It follows from properties 5 and 2
that L ∩ R0 is an S-set, from properties 1 through 4 that (L ∩ R0)s is an S-set,
from property 5 that π((L ∩ R0)s) is an S- set, and finally from property 1 that
π((L ∩R0)s) ∪ {0} is an S-set.

Next, observe that the graph of the absolute value function on R is:

Graph(| · |) = {(r, s) : r ∈ R+ and s = r}
∪{(r, s) : r ∈ R− and s = −r} ∪ {(0, 0)}

The first set is (R × R+) ∩ D2, which is clearly an S-set. The third set is
({0} ×R) ∩ D2, which is clearly an S set. The second set is {(r, s) : r ∈ R−} ∩
{(r, s) : r + s = 0}. The set on the left is clearly an S-set. The set on the right is
A∩ (R×R×{0}) (where A is the graph of addition). It follows from properties 8,
6 and 2 that this set is an S set. Thus the second set is an S set, and so Graph(| · |)
is an S-set. In other words, | · | is an S-function for any O-minimal Tarski system
satisfying properties 1 through 6 and 8.

Similarly we can use property 8 to conclude that (x, y) 7→ ‖x − y‖ is also an
S-function, and so N = {(x, y, ε) ∈ Rn ×Rn ×R : ‖x− y‖ < ε} is an S-set. Now
the closure of X may be expressed as:

clX =
{
y ∈ Rn : ∀ε

(
(ε ∈ R−) or (ε ∈ R++ and (∃x ∈ X, (x,y, ε) ∈ N))

)}

which is an S-set, as asserted.
Closure under definability has been exploited by Blume and Zame (1989) and

Schanuel, Simon and Zame (forthcoming) to show that, for finite games, the graph
of the Nash equilibrium correspondence, and the graphs of many refinements of the
Nash equilibrium correspondence, are semi-algebraic correspondences. We refer to
these papers for more examples of the sort of ε− δ manipulations used above.

We now turn to the basic finiteness properties. In what follows, we fix an O-
minimal Tarski system S that contains addition and multiplication, and list some
important consequences of properties 1 through 9. For further discussion, see van
den Dries (1986) and Bochnak, Coste and Roy (1987).

GLOBAL FINITENESS: Every set X belonging to S has a finite number of
connected components, and each of them belongs to S. If f : X → Y belongs to
S, then each point inverse f−1(y) belongs to S, and there is a positive integer N(f)
such that each point inverse f−1(y) has at most N(f) connected components.

TRIANGULABILITY: If X ∈ Sn, then there is a finite simplicial complex
K ⊂ Rn and a homeomorphism h belonging to S, mapping X onto K.

In view of this property, we may unambiguously define the dimension of X,
dimX, to be the largest dimension of any subsimplex of K.

DIMENSION: IfX ∈ Sn then clX, ∂X ∈ Sn, dim clX = dimX and dim ∂X <
dimX. If f : X → Rn belongs to S, then dim f(X) ≤ dimX.

CONTINUITY: If F : X → Y is a closed-valued correspondence belonging
to S, then there is a subset X ′ ⊂ X belonging to S such that X\X ′ is closed,
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dimX\X ′ < dimX, and the restriction of F to X ′ is continuous. In particular, if
f : X → Y is an S-function, then it is continuous on the complement of a closed,
lower dimensional S-set X ′ ⊂ X.

GENERIC TRIVIALITY: Let f : X → Y be a continuous function belonging
to S. Then there is a subset Y ′ ⊂ Y belonging to Y such that Y \Y ′ is closed, Y ′ has
a finite number of connected components, and for each such connected component
Yi of Y ′, there is a set Zi belonging to S and a homeomorphism hi belonging to S
which maps Yi × Zi onto f−1(Yi) and has the property that f(hi(y, z)) = y for all
y, z.

As we shall see, Generic Triviality serves both as a version of Sard’s Theorem
and as a version of the Implicit Function Theorem, and we shall make extensive use
of it. It is useful to understand the differences, however. Given smooth manifolds
X, Y , and a smooth function f : X → Y , Sard’s Theorem guarantees that most
points y ∈ Y are regular values of f (i.e., that the differential df has rank equal to
the dimension of Y at every point of f−1(y)). The set Y ′ of exceptional (irregular)
values is a set of measure zero.3 If X is compact, the set of regular values is open
and for every regular value y ∈ Y \Y ′ there is a neighborhood W of Y , a manifold
Z, and a smooth homeomorphism h : W × Z → f−1(W ) such that f(h(w, z)) = w.
Generic triviality allows us to obtain the same product structure, in the complement
of an exceptional set Y ′, when X and Y are S-sets and f : X → Y is an S-function,
but there are some important differences. The first of these is that we do not need
to insist that X be compact. (In the smooth case, compactness of X is required to
guarantee that the set of regular values be open. If X is not compact the exceptional
set Y ′ could be dense, in which case no open subset of Y will admit a product
structure.) A bit more subtly, note that in the case of S-sets and S-functions,
there is a finite covering of the complement of the exceptional set by neighborhoods
whose inverse images are products; this need not be possible in the smooth case.
Most importantly, in the case of S-sets and S-functions it will be possible to say
a great deal about the structure of the exceptional set Y ′ and its inverse image
f−1(Y ′). Indeed, Y ′ is an S-set and of lower dimension than Y , f−1(Y ′) is also an
S-set, the restriction of f to f−1(Y ′) is an S-function, and the entire apparatus can
then be applied to the mapping f : f−1(Y ′)→ Y ′. In the smooth case, by contrast,
Y ′ will be a closed set of measure zero, but otherwise may be entirely arbitrary. In
particular, both Y ′ and f−1(Y ′) may fail to be manifolds.

3 Preferences and Demand

For the rest of the paper, we fix an O-minimal Tarski system S that contains addition
and multiplication. (Recall that the two known examples of such systems are the
semi-algebraic sets and the finitely sub-analytic sets.) We consider a consumer,
characterized by a consumption set X ⊂ RL and a preference order �. We assume
that X is closed and convex, and that the preference order is complete, transitive
and continuous. We show first that, if the consumption set and (the graph of) the

3The precise degree of smoothness required depends upon the dimensions of X and Y .
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preference order belongs to S, then the preference order is representable by a utility
function belonging to S.

Theorem 1 If the consumption set X and (the graph of) the preference order �
belong to S, then � is representable by a continuous utility function belonging to S.

Proof: Fix an arbitrary reference point x ∈ X, and write X ′ = {y : y � x} and
X ′′ = X\X ′. Both of these sets belong to S. Now define a utility function u( · ) by

u(y) =
{

+ inf{‖z − x‖ : z � y} for y ∈ X ′,
− inf{‖z − x‖ : y � z} for y ∈ X ′′.

A standard and completely straightforward argument shows that u is lower semi-
continuous and represents the preference ordering �. The graph of u is:

Graphu = {(y, r) : y ∈ X ′ and r > 0 and not(∃z(z, y) ∈ Graph � and ‖z − x‖ < r)

and (∀ε > 0 ∃z′ (z′, y) ∈ Graph � and ‖z − x‖ < r + ε)}
∪{(y, r) : y ∈ X ′′ and r < 0 and not (∃z (z, y) ∈ Graph � and ‖z − x‖ < −r)

and (∀ε > 0 ∃z′ (z′, y) ∈ Graph � and ‖z′ − x‖ < −r + ε)}

Since O-minimal Tarski systems are closed under definability, we conclude that
Graphu belongs to S.

We now have an S-function u which represents �, but it may not be continuous.
Next we modify it to make it continuous. Since u is an S-function, its range must be
a finite union of intervals and single points (Property 7). Using standard arguments
it is easily seen that the range contains no isolated points, and is the union of a
finite number of intervals such that each bounded interval is open from below and
closed from above, and is such that the points of discontinuity are precisely those
in the inverse image of the upper bound for each bounded interval. In other words,
the range is

(a1, b1] ∪ (a2, b2] · · · ∪ (an−1, bn−1] ∪ (an,∞)

where each bi < ai+1 and an <∞ if and only if � is globally non-satiated. Define

v(x) =

{
u(x) if x ∈ u−1(a1, b1],
u(x)− ai if x ∈ u−1(ai, bi] for i = 2, . . . , n.

Each of the sets u−1(ai, bi] is an S-set, and each of the functions u(x) − ai is an
S-function, so the set

Graph v = {Graphu ∩ (u−1(a1, b1]×R)}
⋃

∪ni=2

(
{(x, r) : ∃s(r = s−ai) and((x, s) ∈ Graphu)}∩{u−1(ai, bi]×R}

)

is in S. The function v is a continuous utility representation for the preference order
�.

It is convenient to collect here the following result, which assures us that the
demand correspondence also belongs to S and has the “correct” dimension. The
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reader will recognize this result as the analog in our setting of a well-known result
of Debreu for smooth preferences. Its proof employs a duality idea that seems
novel. View demand as depending on price and income. For each price/income
pair, we identify the utility level the consumer achieves, and then make use of some
facts about the relationship between prices and those consumption bundles which
minimize expenditure at the given price among all bundles achieving that level of
utility. We make no assumptions about curvature or smoothness. In particular, we
allow for the possibility that indifference surfaces have flats and kinks. (To prove
the corresponding result for the case of smooth preferences, one would check for
regularity of the value 0 for the mapping which describes the first order conditions
characterizing demand. Of course, there would be no way to verify the regularity
condition unless the mapping is smooth, ruling out flats and kinks.)

Write ∆ for the simplex of non-negative prices in RL which sum to 1. Demand
depends on income y and prices p. We allow for some prices to equal 0, even though
demand may be undefined at such prices. Let d : ∆×R+ → X denote the demand
correspondence with arguments price and income, and define the demand correspon-
dence D : ∆ × RL

+ → X, with arguments price and endowment, by the equation
D(p, e) = d(p, p · e). The conclusion of the Theorem states that the dimension of
the graph of d is less than or equal to L, and that of the graph of D is less than or
equal to 2L − 1. The smooth-preference version of this Theorem says that the di-
mensions are equal to L and 2L− 1, respectively. We only have inequalities because
our hypotheses are insufficient to guarantee the existence of demand for all price-
income pairs.

Theorem 2 If the consumption set X and preference order � belong to S, then
the graph of the demand correspondences d : R+ ×∆ → X and D : ∆ ×RL

+ → X
generated by � belongs to S, dim Graph d ≤ L and dim GraphD ≤ (L− 1) + L.

The duality argument is facilitated by the following result on convex sets and their
supports. Let C ⊂ Rn be a closed, convex set, and let ρ : ∂C → Rn denote
correspondence that assigns to each x ∈ ∂C its supporting hyperplanes:

ρ(x) = {p : p · x ≤ p · z for all z ∈ C}.

Lemma 1 The map (x, p) 7→ x− p is one-to-one on the domain Graph ρ.

Proof of Lemma 1: Suppose that (x, p) and (y, q) are two points in Graph ρ, and
that x− p = y − q. Then

p · x− p · p = p · y − p · q,
q · y − q · q = q · x− q · p.

Rearranging,

−p · p+ p · q = p · (y − x) ≥ 0,

−q · q + q · p = q · (x− y) ≥ 0.
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Adding these two inequalities gives (p− q) · (p− q) ≤ 0, so p = q and therefore
x = y.
Proof of Theorem 2: The first assertion, that Graph d is an S-set, is again a
simple exercise. The graph of the demand correspondence d is:

Graph d = {(p, y, x) : y ∈ R+ and x ∈ X and p · x ≤ y

and not (∃z z ∈ Z and p · z ≤ y and z � x)}

Since Graph d is definable from S, it is an S-set.4

The calculation of the dimension of the graph of demand relies upon a duality
argument. We will apply Lemma 1 to “at least as good as” sets. Let � x = {y :
(y, x) ∈ �}.

First take prices to be in all of RL
+\{0}, and call the demand correspondence d̂.

The demand correspondence d is the restriction of d̂ to the domain ∆ × R+. Let
u : RL → R be an S-utility representation of the consumer’s preferences �.

It is a consequence of Lemma 1 that the S-function

φ : (p, y, d) 7→ (d− p, u(d))

is one-to-one from Graph d̂ to RL+1. To see this, suppose that φ(p, y, d) =
φ(p′, y′, d′). Then u(d) = u(d′). Since preferences are continuous and locally non-
satiated, it follows that if z is demanded at any price q, then z is on the boundary
of the closed set � x and q supports � x at z. Since � is locally non-satiated, d
and d′ are both on the boundary of � d. Since p and p′ support � d at d and d′,
respectively, it follows from the equality of d−p and d′−p′ and Lemma 1 that p = p′

and d = d′.
Local non-satiation of � implies that y = p · d. Since Graph d̂ is the image of

the S-function φ−1, and since S-functions do not increase dimension, dim Graph d̂ =
dimφ(Graph d̂) ≤ L+ 1.

Let ‖p‖ denote the sum
∑
l pl, and observe that the map π : RL

+ × R × X →
∆×R×X defined by π(p, y, x) = ((1/‖p‖)p, (1/‖p‖)y, x, ‖p‖) is an S-isomorphism
from Graph d̂ to Graph d × R++. Thus dim Graph d + 1 ≤ L + 1, so Graph d has
dimension at most L.

Finally, let πL denote the projection of vectors in RL onto their first L − 1
coordinates. The map φ : ∆ × RL

+ × X → ∆ × R+ × X given by ψ(p, e, x) =
(p, p · e, x, πL(e1)) defines an S-isomorphism between GraphD and Graph d×RL−1

+ .
Thus GraphD has dimension no greater than L+ L− 1.

Having identified new classes of preferences, we ask which of the common spec-
ifications of preferences are included and which are not. Of course, preferences
represented by piecewise linear utility functions are semi-algebraic. More generally,
preferences represented by piecewise polynomial (spline) utility functions are semi-
algebraic, as are preferences represented by Cobb-Douglas and CES utility functions
with rational exponents (eg., x1/4y3/4, x1/4 + y3/4). For irrational exponents, loga-
rithmic, or exponential utilities the situation is slightly more complicated, because

4Note that, even if preferences are piecewise linear, the definition of demand involves quadratic
terms. Hence demand may fail to be piecewise linear even when preferences are.
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the logarithm and exponential function are not finitely sub-analytic on the domain
(0,∞). However, a slight twist will frequently land us back in the finitely sub-
analytic class. Consider for example an economy in which consumption sets are
the positive orthant and utility functions are Cobb-Douglas. Let K ⊂ RNL

++ be a
compact set, and restrict attention to endowments lying in K. There is a compact
set K∗ ⊂ RNL

++ that is a product of intervals (and hence polyhedral), and contains
all feasible, individually rational allocations. The economy we obtain by restricting
consumption sets to K∗ is then finitely sub-analytic, and its competitive equilibria
coincide with the competitive equilibria of our original economy.

We are also compelled to ask whether the requirement that preferences belong
to some O-minimal Tarski system containing additional and multiplication (eg. the
finitely sub-analytic sets or the semi-algebraic sets) places any restrictions on ob-
servable data; the answer is that it does not. Indeed, the now classic constructions
of Afriat (1967) and Diewert (1973) construct piecewise linear utility functions that
rationalize any finite number of demand observations satisfying the Strong Axiom of
Revealed Preferences. Matzkin and Richter (1991) construct piecewise polynomial
(hence semi-algebraic) utility functions that rationalize (in a stronger sense) any
finite number of demand observations satisfying SARP.

4 Local Determinacy of Equilibrium

In this Section we present our main result, the local finiteness and determinacy
of equilibrium prices when consumption sets and preferences belong to a given O-
minimal Tarski system S containing the graphs of addition and multiplication. We
shall state and prove our result first for strictly convex preferences (which generate
demand functions), in order to compare our technical apparatus to that used for
smooth economies, and then for general prefrences (which generate demand corre-
spondences).

We consider exchange economies with L commodities and N consumers, having
consumption sets Xn and preferences �n. Throughout, we assume that consump-
tion sets are closed and convex, that preferences are complete, transitive, continuous,
monotone and locally non-satiated, and that consumption sets and preferences be-
long to a fixed O-minimal Tarski system S containing the semi-algebraic sets. We
view consumption sets and preferences as fixed an endowments as variable. Write
en for the endowment of consumer n, and e−1 for the vector of endowments of con-
sumers other than consumer 1. Write E =

∏
Xn for the space of endowments, and

En for the space of endowment vectors for all consumers other than consumer 1. The
space of prices is the non-negative unit simplex ∆ ⊂ RL

+.5

Theorem 3 If preferences are strictly convex, then there is a closed, lower-dimen-
sional S-set E0 ⊂ E such that, if e ∈ E\E0, then the set of equilibrium prices is
finite. Moreover, the restriction to e ∈ E\E0 of the equilibrium price correspondence
is continuous.

5Since preferences are not required to be strictly monotone, we allow for the possibility that
some equilibrium prices are 0. As in Section 3, we allow for the possibility that demand is undefined
at some prices. Of course, such prices cannot be equilibrium prices, so this causes no difficulty.
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Proof: The proof follows Debreu (1970). Define the map F : ∆×R+×En → RLN

by:

F (p, y, e−1) =





d1(p, y) +
∑N
n=2 dn(p, p · en)− en
e2
...
eN



 .

Given our assumptions, for all e ∈ E , the set F−1(e) is non-empty, and its
projection onto ∆ is the set of equilibrium prices when endowments are e. According
to generic triviality, there is a closed, lower-dimensional S-set E0 ⊂ E such that,
for each of the finite number of connected components Ei of E\E0, there is an S-set
Ai and an S-homeomorphism h : Ei × Ai → F−1(Ai) such that F (h(e, a)) = e.
Thus, for all e ∈ Ei, dimF−1(e) = dimAi. Now we count dimensions. Each Ei
has dimension LN , and Ei × Ai is homeomorphic to a set of dimension LN , so
dimAi = 0. Hence F−1(e) is 0-dimensional. Since it is an S-set, it is finite. Since
F−1(Ai) is a product, the restriction of the equilibrium price correspondence to each
Ai (and hence to E\E0) is continuous.

Note how Generic Triviality simultaneously plays the roles of Sard’s Theorem and
of the Implicit Function Theorem: it tells us that almost all values are “regular” and
gives us a device for counting dimensions. Notice, though, that unlike the Implicit
Function Theorem, we have no criterion for identifying regular values.

Rader’s (1972, 1973) result on the generic determinateness of equilibrium for
absolutely continuous demand applies to semi-algebraic and finitely sub-analytic
exchange economies. Semi-algebraic and finitely sub-analytic functions are continu-
ously differentiable almost everywhere and satisfy his Condition N, that the image
of a null set is null. According to Rader, equilibrium is therefore locally determined
for almost all endowment allocations. Our result differs in two respects from that
obtained through the application of Rader’s Theorem. Our additional hypotheses
allow us to say more about the exceptional set of endowments (closed and lower
dimensional) and more about the equilibrium correspondence (generic continuity).

In the absence of strict convexity of preferences, demand is a correspondence,
rather than a function. In this case, F will also be a correspondence, rather than a
function, and we work with inverse images of appropriate projections of its graphs.
The proof uses the same map and counts dimensions in much the same way the
proof of the preceding Theorem does, but the argument requires that the graph of
the map be cut up in such a way that the dimension of the demand sets and their
supporting price sets can be controlled.

Theorem 4 If preferences are convex, then there is a closed, lower-dimensional
S-set E0 ⊂ E such that, if e ∈ E\E0, then the set of equilibrium prices is finite.
Moreover, the restriction to E\E0 of the equilibrium price correspondence is contin-
uous.

Proof: Define the S-set H ⊂ ∆×R++ ×RL(N−1) ×RLN such that:

H = {(p, y, e−1, d1, . . . , dN) : d1 ∈ D1(p, y), dn ∈ Dn(p, p · en) for n = 2, . . . , N}
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where Dn is consumer n’s demand (correspondence) with arguments price and in-
come. Let φ denote the map from H to RL such that φ(h) = (d1+

∑N
n=2 dn−en, e−1).

The function φ on H is the analog to F in the previous Theorem: (p, y, e−1, d1, . . . ,
dN) is in the inverse image of (z, e−1) if and only if p is an equilibrium price for the
economy with endowment allocation (z, e−1). For a given (p, y, e−1), let y1 = y and
yn = p · en for n = 2, . . . , N . Let k = (k1, . . . , kN) be a vector of integers, and define
Hk ⊂ H to be the subset of H where consumer 1’s demand has dimension k1, and
so forth:

Hk = {h ∈ H : dimD1(p, y) = k1, . . . , dimDN(p, yn) = kN}.

This set will be empty unless all ki ≤ L − 1. Each Hk can be defined by linear
inequalities, and so each Hk is an S-set. The sets Hk partition H.

Next, let � dn denote the consumption bundles consumer n finds at least as
good as dn. Define

Hk,m = {h ∈ Hk : dim{p : p supports each � dn} = m},

where m ≤ L− 1. All the Hk,m partition H.
If the projection of the set of endowments of a particular Hk,m has dimen-

sion less than L, the set of economies having some equilibria described by Hk is
lower dimensional, and Hk can be ignored. Assume, then, that for each consumer
n = 2, . . . , N the projection of Hk onto his endowments has full dimension L. Then

dimHk,m = m+ a+ L(N − 1) +
N∑

n=1

kn,

where a, the dimension of the projection of Hk,m onto consumer 1’s income, is either
0 or 1.

Define φ on Hk,m such that

φ(h) = (
N∑

n=1

dn −
N∑

n=2

en, e−1).

The price vector p is an equilibrium price for e = (e1, . . . , eN) if and only if there is
a y and d = (d1, . . . , dN) such that (p, y, e−1, d) is in the inverse image of e. We can
suppose that the range of φ has dimension NL. Applying generic triviality to φ,
there is a closed, lower dimensional set E0 of endowment allocations such that, on
each of the finite number of connected components Ei of E\E0, φ−1(e) is an S-set
of dimension m+ a− L+

∑N
n=1 kn.

Now h is in φ−1(e) if and only if endowments of consumers 2 through N are
correct and there are dn ∈ Dn(p, yn) such that

∑N
n=1 dn =

∑N
n=1 en. The set∑N

n=1 Dn(p, yn) has dimension no more than L−m, since if d ∈ ∑N
n=1 Dn(p, yn), then

p·d−∑N
n=1 yn = 0 for an m-dimensional set of prices p. Thus the set of demands sum-

ming to d has codimension L−m, in other words, dimension m+ a−L+
∑N
n=1 kn.

It follows from a routine generic triviality argument that, since the dimension of
Hk,m is the same as the dimension of each “fiber” over a price p in the projection of
Hk,m onto ∆, the dimension of this projection must be 0. Continuity follows as in
the proof of the previous Theorem.
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The foregoing results extend the local finiteness results of Debreu to an important
class of preferences which allows for kinks and flats. We have chosen to parameterize
economies by endowments, rather than by endowment distributions, and for good
reason: the corresponding results are not generally true in that setting. Consider,
for example, an Edgeworth box economy. If consumers have identical Leontief utility
functions ui(xi, yi) = min(xi, yi), and the box is square (i.e., the aggregate endow-
ments of the two goods are equal) then any individually rational diagonal allocation,
which is to say any individually rational Pareto optimal allocation, can be supported
as an equilibrium (and different allocations will be supported by different prices).
Hence equilibrium prices will be indeterminate for every endowment distribution.
Of course, for most endowments the box will not be square, and determinacy will
be restored.
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