Lecture 9 - Lists, Bootstrap and Jackknife

Till now we learned about vectors, matrices, and dataframes, and we also learned about classes. Let us look a bit deeper into R.

Lists

> a <- c(x=1,y=5)
> a
x y
1 5
> a <- c(1:4,10:14)
> a
[1] 1 2 3 4 10 11 12 13 14
> a <- c(x=1:4,y=10:14)
> a
x1 x2 x3 x4 y1 y2 y3 y4 y5
1 2 3 4 10 11 12 13 14
> a <- list(x=1:4,y=10:14)
> a
$x
[1] 1 2 3 4
$y
[1] 10 11 12 13 14
> a$x
[1] 1 2 3 4
> a$y
[1] 10 11 12 13 14
> a["x"]
[1] 1 2 3 4
> a["y"]
[1] 10 11 12 13 14
> a <- list(x=1:4,y=c("a","b"),z=1:10)
> a
$x
[1] 1 2 3 4
$y
[1] "a" "b"
$z
[1] 1 2 3 4 5 6 7 8 9 10
> a[1]
$x
[1] 1 2 3 4
> a[1:2]
$x
[1] 1 2 3 4
\[\text{\$y} \\
[1] \text{"a" "b"} \\
> \text{a[[1]]} \\
[1] 1 2 3 4 \\
> \\
\text{Using [] will give us a sublist of the list, which is still a list. Using [[1]] will give us elements of the list.} \\
\text{We already learned about sapply, there is also a function called lapply.} \\
> \text{lapply(1:10, function(x) x^2)} \\
[[1]] \\
[1] 1 \\
[[2]] \\
[1] 4 \\
[[3]] \\
[1] 9 \\
[[4]] \\
[1] 16 \\
[[5]] \\
[1] 25 \\
[[6]] \\
[1] 36 \\
[[7]] \\
[1] 49 \\
[[8]] \\
[1] 64 \\
[[9]] \\
[1] 81 \\
[[10]] \\
[1] 100 \\
> \text{a=lapply(1:10, function(x) x^2)} \\
> \text{a[1:3]} \\
[[1]] \\
[1] 1 \\
[[2]] \\
[1] 4 \\
[[3]] \\
[1] 9 \\
> \text{a[[3]]} \\
[1] 9 \\
> \text{a[[1:3]]} \\
> \text{a[[1]]} \\
[1] 1
Error: recursive indexing failed at level 2

sapply and lapply are very similar, except that sapply will turn its output into a matrix or vector in the end.

> a=lapply(31:40,c);a

[[1]]
 1 [31
[[2]]
 1 [32
[[3]]
 1 [33
[[4]]
 1 [34
[[5]]
 1 [35
[[6]]
 1 [36
[[7]]
 1 [37
[[8]]
 1 [38
[[9]]
 1 [39
[[10]]
 1 [40

> names(a)=c("a","b","c","d","e","f","g","h","i","j")

> a

$a
 1 [31
$b
 1 [32
$c
 1 [33
$d
 1 [34
$e
 1 [35
$f
 1 [36
$g
[1] 37

$h
[1] 38

$i
[1] 39

$j
[1] 40

> a$d
[1] 34

> a["e"]
$e
[1] 35

> b=lapply(a, function(x) x-20)

> b
$a
[1] 11

$b
[1] 12

$c
[1] 13

$d
[1] 14

$e
[1] 15

$f
[1] 16

$g
[1] 17

$h
[1] 18

$i
[1] 19

$j
[1] 20

> sapply(a, function(x) x-20)
a b c d e f g h i j
11 12 13 14 15 16 17 18 19 20

> How to turn a list into a vector?

> b
$a
[1] 11

$b
[1] 12

$c
[1] 13

$d
[1] 14

$e
[1] 15

$f
[1] 16

$g
[1] 17

$h
[1] 18

$i
[1] 19

$j
[1] 20

> unlist(b)
a b c d e f g h i j
11 12 13 14 15 16 17 18 19 20

> setwd("~/R-course-2006/lecture8")
> list.files()
[1] "factorial.txt" "oneway.txt" "Rcourse8_no_output.tm"
[4] "Rcourse8_no_output.tm" "Rcourse8.pdf" "Rcourse8.tm"
[7] "Rcourse8.tm" "regression.txt" "twoway.txt"
> fact=read.table("factorial.txt",sep="\t",head=T)
> fact
 growth diet coat
1 6.6 A light
2 7.2 A light
3 6.9 B light
4 8.3 B light
5 7.9 C light
6 9.2 C light
7 8.3 A dark
8 8.7 A dark
9 8.1 B dark
10 8.5 B dark
11 9.1 C dark
> tapply(fact$growth,fact$diet,c)
> $A
> [1] 6.6 7.2 8.3 8.7
> $B
> [1] 6.9 8.3 8.1 8.5
> $C
> tapply(fact$growth,fact$coat,c)
> $dark
> [1] 8.3 8.7 8.1 8.5 9.1 9.0
> $light
> [1] 6.6 7.2 6.9 8.3 7.9 9.2
> tapply(fact$growth,fact$coat,diet,median)
> A B C
> 7.75 8.20 9.05
> tapply(fact$growth,fact$coat,diet,median,simplify=F)
> $dark
> [1] 8.6
> $light
> [1] 7.55
> tapply(fact$growth,fact$coat,diet,median,simplify=T)
> dark light
> 8.60 7.55
>
> dataframe are also lists, but special lists.
> fact
> growth diet coat
> 1 6.6 A light
> 2 7.2 A light
> 3 6.9 B light
> 4 8.3 B light
> 5 7.9 C light
> 6 9.2 C light
> 7 8.3 A dark
> 8 8.7 A dark
> 9 8.1 B dark
> 10 8.5 B dark
> 11 9.1 C dark
> 12 9.0 C dark
> fact[["growth"]]

>
> fact["coat"]

> fact[1:2]

growth diet
 1 6.6 A
 2 7.2 A
 3 6.9 B
 4 8.3 B
 5 7.9 C
 6 9.2 C
 7 8.3 A
 8 8.7 A
 9 8.1 B
10 8.5 B
11 9.1 C
12 9.0 C

> lapply(fact,c)

$growth
 [1] 6.6 7.2 6.9 8.3 7.9 9.2 8.3 8.7 8.1 8.5 9.1 9.0

$diet
 [1] 1 1 2 2 3 3 1 1 2 2 3 3

$coat
 [1] 2 2 2 2 2 1 1 1 1 1 1

> attributes(fact)

$names
 [1] "growth" "diet" "coat"

$class
 [1] "data.frame"

$row.names
 [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12"

> The attributes of an object can cause R to treat it differently. Two attributes that we already encountered are class, and names. fact is a list, but because the class is "data.frame", it is treated in a special way.

> a=matrix(1:12,3,4)

> a

[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

> attributes(a)

$dim
 [1] 3 3

> all that separates a vector from a matrix is the dim attributes.
> attributes(a)$dim-c()
> a
> [1] 1 2 3 4 5 6 7 8 9 10 11 12
> attributes(a)$dim-c(3,4)
> a
> [1,] 1 4 7 10
> [2,] 2 5 8 11
> [3,] 3 6 9 12
> attributes(a)$dim-c(4,3)
> a
> [,1] [,2] [,3]
> [1,] 1 5 9
> [2,] 2 6 10
> [3,] 3 7 11
> [4,] 4 8 12
>

Bootstrapping

The principle of the bootstrap method is that the data we gathered can represent the external world.

In order to get a distribution of possible values that we could have measured, we re-sample from the data.

Example: Median

Let us say that we have a population of 2000 people, whose heights are the following:

> population-c(rnorm(1500, mean=180, sd=10), rnorm(500, mean=140, sd=10))
> hist(population,n=30);v()

![Histogram of population](image-url)
Now let us assume that we measure the heights of 20 randomly chosen people exactly:

\begin{verbatim}
> measurements-sample(population,20)
> measurements

[17] 191.0370 179.0268 124.8710 128.2074
>
\end{verbatim}

We want to know the median of the distribution. To approximate that, we measure the median of the measurements:

\begin{verbatim}
> median(measurements)

[1] 179.2079
>
\end{verbatim}

We know now the median of the measurements. How wrong are we?

If we had the whole population at our disposal, we could do the process of sampling many times, and see the distribution of the median:

\begin{verbatim}
> pop.samples=t(sapply(1:10000,function(i) sample(population,20)))
> dim(pop.samples)

[1] 10000 20
> pop.samples.medians=apply(pop.samples,i,median)
> hist(pop.samples.medians,n=30);v()

Histogram of pop.samples.medians

\end{verbatim}
> median(population)

 [1] 176.1048

>

We can see that we’re likely to be about 10cm off the real median.

But we don’t have the real population. We only have our samples. To estimate the distribution of medians, we sample from the sample, instead of from the real population:

> sample.samples-t(sapply(1:10000,function(i) sample(measurements,20,rep=T)))
> sample.samples.medians-apply(sample.samples,1,median)
> layout(
 matrix(1:2,2,1));par(cex=0.7);hist(pop.samples.medians,n-30,xlim-c(135,190))
);hist(sample.samples.medians,n-30,xlim=c(135,190));v();layout(1)

As you see, we do not get the same distribution! The first distribution was created by sampling from the real population. The second distribution was sampled from our sample.

Parametric bootstrap

Instead of using the sample as our model for the world, we can base a model on the sample, and then sample from it. For example, let us look at our sample.

> hist(measurements);rug(measurements);v()
It obviously does not look normal - it has too much of a tail on the left.
We could still try to fit the best normal distribution we can find, and then bootstrap.

```r
> a = measurements - mean(measurements)
> z = a / sd(a)
> ks.test(z, pnorm)
```

One-sample Kolmogorov-Smirnov test

data: a
D = 0.2335, p-value = 0.2254
alternative hypothesis: two.sided

You can see that because of the small sample size, the KS test is actually not significant.

```r
> mm = mean(measurements); mm
[1] 164.5417
> msd = sd(measurements); msd
[1] 25.19489
> parametric = matrix( rnorm(10000*20, mean=mm, sd=msd), 10000, 20)
> parametric.medians = apply(parametric, 1, median)
> layout( matrix(1:3, 3, 1)); par(cex=0.7); hist(pop.sample.medians, n=30, xlim=c(135, 190))
> hist(sample.sample.medians, n=30, xlim=c(135, 190))
> hist(parametric.medians, n=30, xlim=c(135, 190)); v(width=5, height=5); layout(1)
```
> sd(sample.samples.medians)
[1] 8.75055
> sd(parametric.medians)
[1] 6.861419
> sd(pop.samples.medians)
[1] 4.687592
>

Jackknife

The Jackknife method was invented before the bootstrap method, and is very similar. Instead of taking random samples from the distribution, we drop each of our sample points.

> jack <- t(sapply(1:length(measurements), function(i) measurements[-i]))
> jack[1:4,1:4]

```
[1,] 186.0301 162.4606 176.1285 133.3787
[2,] 184.1049 162.4606 176.1285 133.3787
[3,] 184.1049 186.0301 176.1285 133.3787
[4,] 184.1049 186.0301 162.4606 133.3787
```
> jack.medians <- apply(jack, 1, median)
> layout(matrix(c(1,2,2,1)), par(cex=0.7)); hist(jack.medians, xlim=c(135,190)); hist(sample.samples.medians, n=30, xlim=c(135,190)); v(); layout(1)

>

>

>

We can see that the jackknife estimate of the error is too small. In fact it is too small by a factor of approximately $\sqrt{20}$, or $\sqrt{(n - 1)^2/n}$.

> sd(jack.medians)
[1] 1.158305
> sd(jack.medians)*sqrt(20)
[1] 5.180097

It is actually clear that the median will move between 1 2 or 3 points at most:

> median(1:3)
[1] 2
> median(1:2)
[1] 1.5
> median(c(1,3))
[1] 2
> median(2:3)
[1] 2.5
>
And as we see in the above example, we get just 2 points.

```r
> table( jack.medi ans )

jack.medi ans
173.280953077412 175.538905170459
   10  10
```

Because the median has this property that it “jumps”, the jackknife is a bad choice in this case.

Let us take another example:

```r
> a=read.table("/home/dirk/data/regression.txt",head=T)
> plot(growth~tannin,data=a);v()
```

```r
> reg=lm(growth~tannin,data=a)
> reg

Call:
  lm(formula = growth ~ tannin, data = a)

Coefficients:
             Estimate Std. Error t value
(Intercept)   11.756      1.676   7.00
  tannin     -1.217      0.539  -2.27

> names(reg)

[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"
```

```r
> reg$coefficients[2]
```

14
tannin
-1.216667

>

Let us say that we would like to know how exact this estimate of the slope is
First, let us write a function that given growth and tannin tells us the slope:

> slope-function(gr, ta){reg_lm(gr ~ ta); reg$coeff[2]}
> slope(agro, atan)

 ta
 -1.216667

>

Now let us write a function that given indexes, calculates the slope for those points of data from a:

> index.slope-function(i) slope(a$gr[i], a$tan[i])
> a

 growth tannin
 1 12 0
 2 10 1
 3 8 2
 4 11 3
 5 6 4
 6 7 5
 7 2 6
 8 3 7
 9 3 8

> index.slope(1:9)

 ta
 -1.216667

> index.slope(1:3)

 ta
 -2

> index.slope(-1)

 ta
 -1.190476

>

Now the jackknife is very simple:

> jack.slopes-sapply((1:9), index.slope)
> jack.slopes

 ta ta ta ta ta ta ta ta
 ta
 -1.190476 -1.253133 -1.270270 -1.161359 -1.216667 -1.242038 -1.117117 -1.200501 -1.321429

>
Bootstrap is a bit more complicated:

```r
> boot-t( sapply(1:200, function(i) sample(1:9, rep=T) ) )
> boot.slopes <- apply(boot,1, index.slope)
> layout(matrix(1:2,2,1)); par(cex=0.7); hist(boot.slopes,prob=T,xlim=c(-3,-0.5))
> hist(jack.slopes,prob=T,xlim=c(-3,-0.5));v();layout(1)
```

Histogram of boot.slopes

![Histogram of boot.slopes](image)

Histogram of jack.slopes

![Histogram of jack.slopes](image)

```r
> sd(boot.slopes)
[1] 0.1943785
> sd(jack.slopes)
[1] 0.06090926
> sd(jack.slopes)*sqrt(9)
[1] 0.1827278
```

Confidence intervals

A general rule of thumb says that to estimate the error, 200 bootstrap samples are enough. To estimate 95% confidence intervals, one needs around 1000.

```r
> boot-t( sapply(1:1000, function(i) sample(1:9, rep=T) ) )
> boot.slopes <- apply(boot,1,index.slope)
> quantile(boot.slopes,0.025)
2.5%
-1.609121
> quantile(boot.slopes,0.975)
97.5%
```
There are actually more accurate methods for calculating confidence intervals using quantiles. It can be done with the function bcanon in the library bootstrap:

```r
> library(bootstrap)
   Error in library(bootstrap) : there is no package called 'bootstrap'
> install.packages("bootstrap")
   Warning in install.packages("bootstrap") : argument 'lib' is missing: using /home/michael/lib/R
   Warning message:
   unable to resolve 'cran.r-mirror.de'.
   Warning: unable to access index for repository http://cran.r-mirror.de/src/contrib
   Warning message:
   no package 'bootstrap' at the repositories in: download.packages(pkgs, destdir = tmpd, available = available,
> bcanon(1:9, 1000, index.slope)
   $confpoints
     alpha    bca point
     [1,]  0.025 -1.6774194
     [2,]  0.050 -1.5909091
     [3,]  0.100 -1.4782609
     [4,]  0.160 -1.4000000
     [5,]  0.840 -1.0920330
     [6,]  0.900 -1.0520833
     [7,]  0.950 -1.0061728
     [8,]  0.975 -0.9530201

   $z0
     [1] -0.06621854

   $acc
     [1] -0.001202818

   $u
     [1] -1.190476 -1.253133 -1.270270 -1.161359 -1.216667 -1.242038 -1.117117
     [8] -1.200501 -1.321429

   $call
   bcanon(x = 1:9, mboot = 1000, theta = index.slope)
   Warning message:
   multi-argument returns are deprecated in: return(confpoints, z0, acc, u, call = call)
> 
```