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Markets have internal dynamics leading to excess volatility and other phenomena

that are difficult to explain using rational expectations models. This paper studies

these using a nonequilibrium price formation rule, developed in the context

of trading with market orders. Because this is so much simpler than a standard

inter-temporal equilibrium model, it is possible to study multi-period markets

analytically. The resulting price dynamics have second-order oscillatory terms.

Value investing does not necessarily cause prices to track values. Trend following

causes short-term trends in prices, but also causes longer-term oscillations. When

value investing and trend following are combined, even though there is little

linear structure, there can be boom–bust cycles, excess and temporally correlated

volatility, and fat tails in price fluctuations. The long-term evolution of markets

can be studied in terms of flows of money. Profits can be decomposed in terms of

aggregate pairwise correlations. Under reinvestment of profits this leads to a

capital allocation model that is equivalent to a standard model in population

biology. An investigation of market efficiency shows that patterns created by

trend followers are more resistant to efficiency than those created by value

investors, and that profit maximizing behavior slows the progression to efficiency.

Order of magnitude estimates suggest that the timescale for efficiency is years to

decades.

1. Introduction
The concept of equilibrium is central in economics. While equilibrium models have
clearly been very useful in economics, real markets exhibit properties that they have
difficulty explaining. Prices display excess volatility, i.e. they change more than rational
measures of value would lead one to expect (Shiller, 1997). Most large price changes
occur in the absence of anything that can clearly be labeled as ‘news’ (Cutler et al., 1989).
In a full rational expectations equilibrium there should be no speculative trading
(Geanakoplos, 1992; Milgrom and Stokey, 1982; Geanakoplos and Sebenius, 1983),
whereas trading in foreign exchange markets exceeds a trillion dollars a day, and is at
least a factor of 50 greater than the daily world GNP. Furthermore, price movements
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have temporally correlated or clustered volatility (Mandelbrot, 1963, 1997; Engle, 1982)
and fat tails.2 These facts are difficult to reconcile with rational expectations equi-
librium.

This  paper  develops a  simple  nonequilibrium  theory of price formation that
naturally explains the internal dynamics of prices and markets. The central goals are:
(i) to provide a treatment of price formation that is motivated by the structure of
markets, and is simpler than standard inter-temporal equilibrium models; (ii) to use
this to study the price dynamics of common trading strategies; (iii) to understand how
profits and losses drive market selection; and (iv) to study the progression toward
market efficiency in a framework that does not effectively assume it at the outset.

The  paper is  divided  into three  sections, somewhat whimsically called ‘Force’,
‘Ecology’, and ‘Evolution’. The first of these sections gives a precise definition for the
‘market force’ exerted by buying and selling, by deriving a simple price formation rule

within a model involving a market maker and directional traders submitting market
orders.

The simplicity of the price formation rule developed in the first part enables the

study of prices in an infinite period setting (in contrast to the usual one- or two-period
settings of most equilibrium models). Section 3, ‘Ecology’, works several examples

for commonly used strategies, such as value investing and trend following. Since the
market maker is built into the price formation process, it is possible to study the price

dynamics of strategies one at a time, which gives insight into their dynamics when they
are combined. While value  investing strategies  induce  negative short-term auto-
correlations in prices, and trend following strategies induce positive short-term

autocorrelations, over  longer  timescales  their  effects  are  more complicated. In a
nonequilibrium setting there are inevitably second-order terms in the price dynamics.
Combining value investors and trend followers leads to excess volatility and price
oscillations corresponding to boom–bust cycles.

The simple price formation rule derived in the first chapter is special in that the
profits and losses of a given agent or strategy can be decomposed in terms of pairwise
correlations with the positions of other agents or strategies. Section 4, ‘Evolution’,
develops a simple theory of capital allocation. This leads to a set of differential equa-
tions that describe the flow of capital. These equations are equivalent to the generalized
Lotka–Volterra equations, which are the standard model for population dynamics in
ecology. Like biological species, financial strategies can have competitive, symbiotic or
predator–prey relationships. The tendency of a market to become more efficient can be
understood in terms of an evolutionary progression toward a richer and more complex
set of financial strategies.

The desire to build financial theories based on more realistic assumptions has led to
several new strands of literature, including psychological approaches to risk-taking

2The distribution of large price fluctuations decreases as a power law on timescales less than a month.
For reviews see Lux (1996), Mantegna and Stanley (1999) or Farmer (1999).
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behavior,3 evolutionary game theory4 and agent-based modeling of financial markets.5

Although substantially different in methods and style, these emerging sub-fields are all
attempts to go beyond economic theories based on assumptions of equilibrium and
efficiency. In particular, psychological models of financial markets focus on the manner
in which human psychology influences the economic decision making process as an
explanation of apparent departures from rationality. Evolutionary game theory studies
the evolution and steady-state equilibria of populations of competing strategies in
highly idealized settings. Agent-based models are meant to capture complex learning
behavior and dynamics in financial markets using more realistic markets, strategies
and information structures. The idea that there are analogies between evolution and
economics has a long history (for reviews see Nelson and Winter, 1982; England, 1994;
Ruth, 1996). The analogy pursued here identifies trading strategies with species, and the
capital invested in a strategy with population. This is given substance by the analogy to
Lotka–Volterra equations given in Section 4.2.

Agent-based models are often so complicated that analytical results are difficult to
obtain. At the other extreme, evolutionary game theory models are often so unrealistic
that it is not clear they bear any relation to real economies. The framework developed
here can either be viewed as a simple setting for agent-based modeling, or a more
realistic setting for an evolutionary game. On one hand the model is not dramatically
more complicated than the iterated prisoner’s dilemma (Axelrod, 1984), yet on the
other hand it attempts to describe markets at some level of realism. It should hopefully
provide a simple theoretical framework in which to investigate the impact of psycho-
logical behavior on price dynamics.

The goal here is not to formulate the most realistic possible market model, but rather
to formulate the simplest model that is also reasonable. The purpose is to make a
canonical model around which other nonequilibrium models can be viewed as
refinements. By keeping the model simple it becomes possible to investigate many
questions analytically, such as whether prices reflect values, how markets evolve on
longer timescales, and under what circumstances and on what timescale evolution
causes them to become efficient.

3For examples of work in ‘behavioral economics’, see De Bondt and Thaler (1995), Kahneman and
Tversky (1979) and Shiller (1998).

4For examples of work in evolutionary game theory applied to economics, see Friedman (1991, 1998),
Samuelson (1998) and Weibull (1996). See also the literature on the El Farol bar problem/minority
game (Arthur, 1994; Challet and Zhang, 1997).

5A few examples of agent-based modeling include Arthur et al. (1997), Bouchaud and Cont (1998),
Chiarella (1992), Caldarelli et al. (1997), Chan et al. (1998), Coche (1998), Iori (1999), Joshi et al.
(1998), LeBaron et al. (1999), Levy et al. (1996), Lux (1997, 1998), Lux and Marchesi (1999), Rieck
(1994), Takayasu et al. (1992, 1997) and Youssefmir et al. (1998). For reviews see LeBaron (1999) and
Tesfatsion (1999).
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2. Force

2.1 The need for a nonequilibrium approach to price formation

There are serious theoretical problems with the assumption of economic equilibrium.
As articulated by Phelps (1991):

The agents of equilibrium models are not simply rational creatures; they
have somehow come to possess fantastic knowledge. The equilibrium
premise raises obvious problems of knowledge: why should it be supposed
that all the agents have hit upon the true model, and how did they manage
to estimate it and conform to it more and more closely? There has always
been a strand of thought, running from Morgenstern in the 1930s to
Frydman in the present, that holds that we cannot hope to understand the
major events in the life of an economy, and perhaps also its everyday
behavior, without entertaining hypotheses of disequilibrium.

See also Frydman and Phelps (1983).

We will consider the words disequilibrium, nonequilibrium and out-of-equilibrium as
synonyms. A typical approach to disequilibrium price formation uses a price adjust-
ment process of the form

(1)

where P is the price at time t, D is the excess demand (i.e. demand – supply), and f is an
increasing function. (For a full list of notations see Table 1.) In classic treatments of
Walrasian tatonnement, agents signal their excess demand to each other and adjust
prices, but only make transactions when prices reach equilibrium (e.g. Samuelson,
1941, 1947; Walker, 1996). This does not reflect the way trades are done in most modern
financial markets. While more sophisticated models have been developed that allow
transactions out of equilibrium, the main thrust of such work has generally been to
determine stability conditions that justify convergence to equilibrium (e.g. Fisher,
1983). Nonequilibrium behavior is viewed as a complication in the route to equi-
librium. Temporary equilibrium models (e.g. Grandmont, 1988) have been more
successful in producing concrete results, and in recent years the study of out-of-
equilibrium behavior has become unpopular.

The theory of rational expectations is built upon the assumptions of perfect com-
petition, rational expectations, market clearing, agent optimization and full knowledge
of prices in advance of transactions. All of these assumptions are questionable. It is
possible to make incremental departures from this framework, for example, by allowing
imperfect competition in the form of asymmetric information (Grossman, 1989), or
assuming bounded rationality (Simon, 1956; Sargent, 1993). Empirical studies show
half lives for market clearing as long as a week (e.g. Hansch et al., 1998). As a previous
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market practitioner, I can provide an existence proof against agent optimization by
assuring the reader that my firm’s trading is rarely, if ever, optimal.

The assumption that prices are known in advance of transactions is also prob-
lematic. In modern financial markets changes in the demand of individual agents
are expressed in terms of orders. The two most common types of orders are market
orders and limit orders. A market order is a request to transact immediately at the best
available price. The fill price for small market orders is often quoted, so that it is known
in advance, but for large market orders the fill price is unknown. In contrast, a limit
order is a request to transact only at a given price or better. Thus the fill price is known,

Table 1 Summary of notation

Symbol Meaning

ct
(i) capital of ith agent or strategy at time t (see Section 2.3)

dt dividend paid by the asset at time t
D excess demand (demand – supply)
gt
(i) profit of agent i at time t (see equation 26)

G(ij) profit of agent j due to agent i (see equation 32)
(i, j) superscripts denoting a particular agent or strategy
K total number of shares in the market
mt logarithm of mispricing; = pt – vt

N number of different agents or strategies
pt logarithm of midpoint price at time t
Pt midpoint price at time t
rt log return at time t; = pt – pt–1

R(i) return to ith agent or strategy; = 〈g(i)〉/c(i)

T threshold for entering a position in a state-dependent value strategy (see Section 3.1.3)
vt
(i) log of perceived value of agent i at time t (see Section 3.1)

V the position of a simple value strategy (see Section 3.1.1)
xt
(i) position of agent or strategy i at time t

α ratio of capital to liquidity
γ(i) inflow rate of capital from outside the market to agent i
∆ time difference ∆yt = yt – yt–1

ηt random change to perceived logarithm of value at time t (see Section 3.1)
κt

j price sensitivity; = (1/λ)〈∂ωt+1/(∂pt–j)〉 (see equation 40)
λ liquidity
µ(i) mean profit caused by dividends or correlation to external noise (see equation 32)
ωt

(i) order placed by agent or strategy i at time t (can be positive or negative)
ωt net order at time t; = Σωt

(i)

π pattern in log-returns, corresponding to non-zero expectation
ρx(τ) autocorrelation of xt for time lag τ, i.e. the correlation of xt and xt–τ
σx standard deviation of xt

τ threshold for exiting a position; also used to denote time lags
ξt random change in price at time t due to external information
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but the time of the transaction is unknown—indeed, the transaction may not be
completed at all. In both cases there is uncertainty in either the time or the price of the
transaction. This means that, barring miracles, individual transactions occur out of
equilibrium.

2.2 Price formation model

The goal of this section is to derive a market impact function (sometimes also called a
price impact function) relating order flow and prices.

Model framework. We assume there are two types of financial agents, who trade an asset
(measured in units of shares) that can be converted to money (which can be viewed as a
risk-free asset paying no interest). The first type of agents are directional traders. They
buy or sell by placing market orders, which are always filled. In the typical case that the
buy and sell orders of the directional traders do not match, the excess is taken up by the
second type of agent, who is a market maker. The orders are filled by the market maker
at a price that is shifted from the previous price, by an amount that depends on the net
order of the directional traders. Buying drives the price up; selling drives it down. The
market impact function is the algorithm that the market maker uses to set prices. This
defines a price formation rule relating the net order to the new price.

Let there be N directional traders, labeled by the superscript i, holding xt
(i) shares at

time t. Although this is not necessary, in this paper we assume synchronous trading at
times …, t – 1, t, t + 1, … Let the position of the ith directional trader be a function6

where It
(i) represents any additional external information. The function can be thought

of as the strategy or decision rule of agent i. The order ωt
(i) is determined from the

position through the relation

(2)

A single timestep in the trading process can be decomposed into two parts: (i) the
directional traders observe the most recent prices and information at time t and submit
orders ωt+1

(i); and (ii) the market maker fills all the orders at the new price Pt+1.

To keep things simple, we will assume that the price Pt is a positive real number,7 and

x X P P It
i i

t t t
i

+ −=1 1
( ) ( ) ( ), , ,Ke j

ωt
i

t
i

t
ix x( ) ( ) ( )= − −1

6In Section 4 we allow the scale of trader i’s strategy to depend on profits, which depend on past
positions.

7In real markets prices are not unique. Market makers are willing to buy at a low price, called the bid, or
sell at a higher price, called the offer or the ask. The difference between the bid and the offer is called the
spread. Requiring that prices are unique is equivalent to setting the spread to zero. This simplification
neglects one of the primary sources of profits for market makers. Nonetheless, we will see that the
market maker still makes profits on average, and the model is quite reasonable.
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that positions, orders and strategies are anonymous.8 This motivates the assumption
that the market maker bases price formation only on the net order

The algorithm the market maker uses to compute the fill price for the net order ω is an
increasing function of ω

(3)

Note that because orders are anonymous, with more than one trader the fill price is
unknown to individual agents when orders are placed.

Derivation of market impact function. An approximation of the market impact function
can be derived by assuming that is of the form

(4)

where φ is an increasing function with φ(0) = 1. Taking logarithms and expanding in a
Taylor’s series, providing the derivative φ′(0) exists, to leading order9

(5)

This functional form forφwill be called the log-linear market impact function. λ is a scale
factor that normalizes the order size, and will be called the liquidity. It is the order size
that will cause the price to change by a factor of e, and can be measured in either units of
shares or money.

For an equilibrium model the clearing price depends only on the current demand
functions. For a general nonlinear price formation rule, in contrast, the price at any
time depends on the full sequence of previous net orders. The log-linear rule is
somewhere in between: the price change over any given period of time depends only on
the net order imbalance during that time. In fact, we can make this a requirement, and

ω ω=
=
∑ ( )i

i

N

1

P f Pt t+ =1 ,ωb g

f P Pt t,ω φ ωb g b g=

log logP Pt t+ − ≈1
ω
λ

8In real markets agents often use multiple brokers to disguise the identity of their orders, to keep
trading anonymous. This can be inconvenient, and not all agents use all possible brokers, so it is often
possible to make inferences about identity. Thus some traders may have a bigger influence on price
formation than others (e.g. O’Hara, 1995).

9This derivation, along with many of the other results in this paper, was presented at a seminar at
Jussieu in Paris, in June 1997. A similar derivation was given by Bouchaud and Cont (1998), who
acknowledge their attendance in a footnote. Although this derivation was used in the 1994 version of
this paper, in the 1998 version I gave another derivation based on a ‘no arbitrage’ condition. This turned
out to be wrong. In fact, this is sufficient to show that φmust be increasing, but not to determine its
form.
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use it to derive the log-linear rule: suppose we require that two orders placed in
succession result in the same price as a single order equal to their sum, i.e.

(6)

By grouping orders pairwise, repeated application of equation (6) makes it clear that
the price change in any time interval only depends on the sum of the net orders in this
interval. Substituting equation (4) into equation (6) gives

This functional equation for φhas the solution

(7)

which is equivalent to equation (5). Other possible solutions are φ(ω) = 0 and φ(ω) = 1,
but neither of these satisfy the requirement that φis increasing.

The log-linear price formation rule is only an approximation. It is, however, perhaps
the simplest one that gives reasonable results. In addition to the path-independence
derived above, it has several other special properties, as shown in Section 4. It simplifies
the attribution of profits by making it possible to decompose them pairwise based on
correlations of positions. It also implies that total realized wealth is conserved in closed
systems. The demonstration of these properties is interesting in part because it makes
it clear how nonlinearities lead to path dependence, non-decomposability and non-
conservation of realized wealth.

Problems with these assumptions. The derivation above implicitly assumes that market
impact is permanent. That is, price changes caused by a net order at any given time
persist until new net orders cause other changes. In contrast, if the market impact is
temporary, price changes decay, even without new order flow.

The assumption that the market impact function φdepends only on the net order
does not take into account the market maker’s risk aversion. Real market makers use
their ability to manipulate the price to keep their positions as small as possible.
Consideration of such inventory effects makes the price formation process depend on
the market maker’s position, which depends on past as well as present orders.10 The
assumption that the new price depends only on the most recent order and price also
neglects other possible influences. For example, news might change the price directly,
without any intervening order flow. Such possibilities are crudely modeled here by
adding an external noise term (see equation 8).

There is an implicit assumption that the market is symmetric in the sense that there
is no a priori difference between buying and selling. Indeed, with any price formation
rule that satisfies equation (6), buying and selling are inverse operations. (This is clear

f f P f P, , ,ω ω ω ω1 2 1 2b gc h b g= +

φ ω ω φ ω φ ω1 2 1 2+ =b g b g b g

φ ω ω λb g = e

10For an example of an empirical price formation rule that depends on the market maker’s position see
Huang and Stoll (1994).
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by letting ω2 = –ω1, which implies that f –1(P, ω) = f (P, –ω).) This is reasonable for
currency markets and many derivative markets, but probably not for most stock
markets. The short selling rules in the American stock market, for example, make one
expect that the market impact of buying and selling are different. This was observed by
Chan and Lakonishok (1993, 1995). Such asymmetries can be taken into account by
letting the liquidity for buying and selling be different.

I wish to emphasize that I do not consider the log-linear rule to be an accurate
prediction of the true market impact function φ. Indeed, several different empirical
studies suggest that the shift in the logarithm of the price shift plotted against order size
is a concave nonlinear function.11 The derivation presented here merely justifies the
log-linear market impact function as a reasonable starting approximation. Its simplicity
facilitates analytical calculations that can be useful in gaining insight into other issues.

2.3 Dynamics

We can now write down a dynamic system describing the interaction between trading
decisions and prices. Letting pt = logPt, and adding noise, equation (5) becomes

(8)

I have added a random term ξt to account for possible external perturbations to the
price that are not driven by trading, such as news announcement or perceived arbitrage
possibilities in related markets. The dynamics of equation (8) are completely general.
Depending on the collection of functions ω(i), they can have stable fixed points, limit
cycles or chaotic attractors, or they can be globally unstable. The function ω(i) is defined
in terms of the positions by equation (2).

There is some arbitrariness in what is meant by a ‘strategy’. If an agent switches
randomly between two strategies, their combination can be regarded as a single mixed
strategy. In terms of the price dynamics, N agents all using the same strategy x(i) are
equivalent to a single agent with strategy Nx(i). However, when it comes to selection, as
discussed in Section 4.4 (Many traders in the same niche), these are not necessarily
equivalent. The superscript (i) can either refer to a given agent or a given strategy,
depending on the context.

The choice of a discrete time, synchronized trading process is a matter of con-
venience. We could alternatively have used an asynchronous process with random
updating (which is also easy to simulate), or a continuous time Weiner process (which
has advantages for obtaining analytical results). The modification of equation (8) is
straightforward in either case. The time ∆t corresponding to a single iteration should be
thought of as the timescale on which the fastest traders observe and react to the price,
e.g. from 1 min to 1 day.

p p p p It t
i

t t t t
i

N

+ − +
=

= + +∑1 1 1
1

1

λ
ω ξ( ) , , ,Kb g

11For discussions of empirical evidence concerning market impact see Hausman and Lo (1992), Chan
and Lakonishok (1993, 1995), Campbell et al. (1997), Torre (1997) and Keim and Madhaven (1999).
Zhang (1999) has offered a heuristic derivation of a nonlinear market impact rule.
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There are several free parameters in equation (8). These include the magnitude of ξ,
the liquidity λ, ∆t, and the scale of ω(i). The last three are not independent. To see this,
suppose we make a change of scale, ω(i) → c(i)ω(i), where c(i) > 0. The scale parameter is
proportional to the capital of trader i, and controls the size of his orders and positions.
The dynamics of equation (8) depend only on the non-dimensional ratios α(i) = c(i)/λ,
so doubling the liquidity is equivalent to doubling the scale of all the strategies.
Similarly, in the limit where the iteration interval ∆t → 0, increasing ∆t is equivalent to
increasing λ by the same factor.

There is also a question of units. x,ωand λ can be converted from units of shares to
units of money by multiplying by the price Pt. We can use either set of units based on
convenience. For the results on dynamics in Section 3 this distinction is irrelevant, but
many of the results concerning profits in Section 4 depend on measuring positions,
orders and liquidity in terms of money.

2.4 Comparison to other methods of price formation

Temporary equilibrium and market clearing. To compare with a standard temporary
equilibrium market clearing model for price formation (e.g. Grossman and Stiglitz,
1980; Grandmont, 1988; Arthur et al., 1997), write the total demand D as a function of
the logarithm of the price p. Suppose D(p) changes by a small amount δD, i.e. D(p) →
D(p) + δD(p). For the market to clear the total demand must remain constant. To first
order in δD this implies that δD(p) + D′(p)δp, or

(9)

It is tempting to identify ω = δD and λ = –D′(p), which makes equation (5) and
equation (9) the same.

However, there are several important differences. Equation (8) is more realistic in
that the price change at time t + 1 depends on decisions made based on information
available at time t. As a result, demands are generally not satisfied, and demand and
position are not equivalent. In addition, the formalism here makes it clear that there is
coordination problem that must be solved to achieve equilibrium: from the point of
view of the market maker, the strategies of directional traders are uncertain, and from
the point of view of the directional traders, the liquidity is uncertain. Yet to satisfy equa-
tion (9), the liquidity must be the derivative of the agents’ total demand. For the equi-
librium approximation to be reasonable each agent must learn enough about the other
to maintain this coordination, despite ongoing variations in both liquidity and capital.

Nonequilibrium effects are likely to be more important on shorter timescales, where
the lack of market clearing is important. Equilibrium models should be more accurate
on longer timescales, e.g. a month or more, where non-clearing effects have decayed,
and where errors due to modeling with the wrong market impact function might
accumulate.

Perhaps the biggest advantage of the nonequilibrium model developed here is

δ δ
p

D

D p
= −

′b g
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simplicity.12 Finding a clearing price in a temporary equilibrium model requires a

cumbersome search over prices. Even in the simplest case where the individual demand

functions are linear, this involves solving a system of simultaneous equations at each

timestep. As a result, analytical results are typically obtainable only for a few time

periods. In contrast, here we have a difference equation, giving an infinite period

model.

Related work in market making. The literature on market making is reviewed by

O’Hara (1995). The standard view is that market making is driven by order processing

costs, adverse information and inventory effects. Order processing costs are simply

the charges incurred for handling transactions; adverse information occurs because

directional traders may possess additional information that tends to reduce market

maker profits; inventory effects occur because of the market maker’s aversion to risk

and her consequent desire to keep her net position as low as possible. Under the model

derived here the price is manipulated in the direction of the net of incoming orders.

Thus this model includes both an adverse information and an inventory effect

(although the inventory effect is weak, since it does not depend on the market maker’s

position).

The most relevant point of comparison is Kyle’s (1985) model for continuous

auctions and insider trading. There are three types of agents: market makers, an insider

with perfect knowledge of the liquidation value of the asset (the eventual final price)

and noise traders who submit random orders. The final liquidation value and the

orders of the noise traders are both normally distributed. By imposing a temporary

equilibrium the noise trader derives a price formation rule of the form

(10)

This result comes from maximizing the profits of the insider while otherwise assuming

market efficiency (no profits for the market maker). A similar price formation rule was

also derived by Grossman and Stiglitz (1980). It is encouraging that these models give

qualitatively similar results, even though the assumptions are so different.

There is an important difference, however: equation (10) is stated in terms of the

price, whereas equation (5) is stated in terms of the logarithm of the price. Kyle’s price

formation rule fails to satisfy the obvious boundary condition that the price remains

positive. This problem can be traced back to the assumption of normally distributed

final liquidation values.

~
P P− = ω

λ

12Treating the orders of all agents as equivalent greatly simplifies matters. In an equilibrium model
agents with steeper demand functions exert more influence on the price. If we were to construct an
analogous market impact function φ corresponding to equilibrium price formation, it would depend
on the entire set of N orders. For the market-making model used here,  in contrast, φ has a
one-dimensional domain. Thus out-of-equilibrium price formation in this context is simpler and more
highly constrained than in equilibrium.
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An important advantage of Kyle’s model is that he is able to derive the liquidity,

which is

(11)

where σi is the standard deviation of liquidation values known to the insider and σn is

the standard deviation of orders submitted by the noise traders. Kyle’s results are

important in the historical context of the market microstructure literature because they

give insight into why informed agents may trade incrementally in order to reveal their

true intentions gradually. The impact of a large market order can easily overwhelm

what might otherwise be a splendid profit-making opportunity. This is well known to

competent market practitioners, who spend considerable effort on order tactics to

minimize market friction. This has been the subject of recent papers by Bertismas and

Lo (1998) and Almgren and Chriss (1999). For a discussion of market friction see

Section 4.1 (Conservation laws).

Market  making with limit orders. In real markets limit orders are an important

component of market making. Most market makers keep a limit order book, containing

unfilled limit orders at each price level, ordered in priority according to their time of

reception. A market order can be filled either by transacting with a limit order placed by

another trader or by transacting directly with the market maker. Market making and

limit orders go hand-in-hand. Indeed, it is possible to act as a market maker by

simultaneously submitting buy and sell limit orders as needed to bracket the current

price.

Explaining the role of limit orders in price formation is beyond the scope of this

paper (see Bak et al., 1997; Eliezer and Kogan, 1998). However, it is worth pointing out

that when market making is done purely by limit orders, there is a correspondence

between the density of limit orders and the market impact function. As before, let prices

be continuous, and let the density of limit orders be δ(P). When a market order ω is

received it is crossed with unfilled limit orders that are of opposite sign, beginning with

those closest to the current price. The resulting shift in the price can be found from the

condition

(12)

The density function d(P) = λ/P is a natural choice, since it is positive and scale

independent. Substituting this into equation (12) and integrating gives equation (7). In

a steady state the density of limit orders will be determined as a balance between the

volume of limit orders accumulating in the book, and the volume of market orders and

crossing limit orders removing them from the book. We would expect the density δ(P)
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and therefore λ to increase with the volume of limit orders. Note that Kyle’s model
predicts that market orders have the opposite effect.13

3. Ecology
This section introduces several commonly used trading strategies and studies their
price dynamics. Since the market maker is in a sense a ‘neutral’ agent, we can begin by
studying strategies individually. Each strategy has a characteristic induced market
dynamics, which provides useful intuition when many strategies are present at once.
Throughout this section we will assume that the strategies are fixed for a given
simulation. Profits are not reinvested. The consequences of reinvestment and other
forms of capital allocation are studied in Section 4.

There are two reasons for calling this section ‘Ecology’. The first is that, in analogy
with biology, it stresses the interrelationships of financial agents with each other and
their environment. The interactions of financial agents are strongly mediated through a
single variable, the price, which forms an important part of their environment. Each
trading strategy influences the price, and the price in turn influences each trading
strategy.

The second reason has to do with the approach. An ecologist studying the inter-
action  of mountain  lions and deer begins by describing their  behavior, without
worrying about why it occurs. Similarly, I will simply take some of the most common
trading strategies as given and study their price dynamics. Of course, explaining why
these strategies are used in terms of a broader principle, such as utility maximization, is
a very interesting question—but it is beyond the scope of this paper.

Despite the wide variation in financial trading strategies, we can classify them into
broad groups. One method of classification is based on information inputs. Decision
rules that depend only on the price history are called technical or chartist strategies.
Trend-following strategies are a common special case in which positions are positively
correlated with past price movements. Value or fundamental strategies are based on a
subjective assessment of value in relation to price.

We will show that over short timescales value-investing strategies induce negative
autocorrelations in prices. Real markets have autocorrelations close to zero, and so
apparently do not consist purely of value investors. Trend-following strategies, in
contrast, induce positive short-term autocorrelations. By making an appropriate com-
bination of value strategies and trend-following strategies, the price series can have low
autocorrelations, even though it has a strong nonlinear structure that is nonetheless

13σn in equation (11) is the standard deviation of random trading, which is proportional to volume.
Thus liquidity drops as market order volume goes up. This makes sense: limit orders that do not cross
the current price level enhance liquidity, and market orders and limit orders that cross the current price
level deplete it. However, when one takes competitive market making into account this is not so
obvious: with more market order trading volume there are more opportunities to cross orders and less
risk for a given level of profits.
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difficult to detect. A combination of value investors and trend followers gives rise to

commonly observed market phenomena, such as fat tails in the distribution of log-

returns, correlated volume and volatility, and temporal oscillations in the difference

between prices and values.

Induced autocorrelations on longer timescales are generally complicated. Strategies

are necessarily formulated in terms of positions, which determine both risk and profits.

Market impact, however, is caused by orders, which are the time difference or derivative

of positions. Thus the nonequilibrium price dynamics induced by any given strategy

generally have second-order oscillatory terms, as demonstrated in the following

examples.

3.1 Value investors

Value investors make a subjective assessment of value in relation to price. They believe

that value is not fully reflected in the price: if an asset is undervalued the price will tend

to rise, and if it is overvalued the price will tend to fall. They attempt to make profits

by taking positive (long) positions when they think the market is undervalued and

negative (short) positions when they think the market is overvalued.

Value is inherently subjective. The assessment of value might involve the analysis of

fundamental data, such as earnings and sales, or judgements based on the quality of

management. For the purposes of this paper I do not care how individual agents form

their opinions about value. We take this as given. The focus is rather on the trading

strategy, which can lead to interesting dynamics in the price and its relation to value.

A market can be viewed as an organ of society that performs the function of resource

allocation. Markets help set society’s goals. If the price of pork bellies go up, people will

grow more pigs. One measure of how well markets perform their function is whether

prices correspond to a consensus view of values. Of course, perceptions of value

differ—this drives trading. Nonetheless, if markets perform their function efficiently,

prices should track aggregate values, at least over the long term. There is no reason to

assume that this happens a priori—it  should be possible to derive it  from first

principles. Evidence from market data suggests that, while prices track values over the

very long term, large deviations are the rule rather than the exception. Campbell and

Shiller (1988) call this excess volatility. We will see that this arises naturally from the

price dynamics of value strategies, particularly when there are nonlinearities and

diverse views.

Earlier studies of nonequilibrium price formation (e.g. Fisher, 1983) assume that

value is fixed. This oversimplifies the problem, tilting the analysis in favor of stability.

Here we will assume that the perceived value is given by an exogenous random process.

Let the logarithm of the perceived value be a random walk,

(13)

where ηt is a normal, IID noise process with standard deviation ση and mean µη. We

v vt t t+ += +1 1η
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will begin by studying the case where everyone perceives the same value, then return to
study the case where there are diverse perceived values

The natural way to quantify whether price tracks value is by using the concept of
cointegration, introduced by Engle and Granger (1987). This concept is motivated by
the possibility that two random processes can each be random walks, even though on
average they tend to move together and stay near each other. More specifically, two
random processes yt and zt are cointegrated if there is a linear combination ut = ayt + bzt

that is stationary. For example, price and value are cointegrated if pt – vt has a well-
defined mean and standard deviation.

Simple value strategies. For the simplest class of value strategies the position is of the
form

(14)

where V is a generally decreasing function with V(0) = 0, vt is the logarithm of the
perceived value, and pt is the logarithm of the price. Generally decreasing means that V
either decreases or remains constant, and is not constant everywhere.14 This class of
strategies only depends on the mispricing mt = pt – vt. Such a strategy takes a positive
(long) position when the asset is underpriced; if the asset becomes even more under-
priced, the position either stays the same or gets larger. Similarly, if the mispricing is
positive it takes a negative (short) position.

If V is differentiable we can expand it in a Taylor series. To first order the position can
be approximated as

where c > 0 is a constant proportional to the trading capital. From equations (2) and (8)
the induced price dynamics in a market consisting only of this strategy and the market
maker are

(15)

where ∆ is the time difference operator, e.g.∆pt+1 = pt+1 – pt. Letting rt = ∆pt,α = c/λ and
ηt = ∆vt, this can be written

(16)

These dynamics are second order. This is evident from equation (15) since pt+1 depends
on both pt and pt–1. The stability can be determined by neglecting the noise terms and
writing equation (16) in the form ut+1 = Aut, where ut = (rt, pt). The eigenvalues of A are

x x v p V p vt t t t t+ = = −1 ,b g b g

x c p vt t t+ = − −1 b g
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c

v pt t t t+ += − +1 1λ
ξb g
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14This also allows for the possibility of positions of a single sign, e.g. only long positions.
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(1, –α). Thus, when α ≤ 1 the dynamics are neutrally stable, which implies that the

logarithm of the price, like the logarithm of the value, follows a random walk. When α >

1 the dynamics are unstable.

Simple value strategies induce negative first autocorrelations in the log-returns rt.

This is easily seen by multiplying both sides of equation (16) by rt–1, subtracting the

mean and taking time averages. Let

(17)

where σr is the standard deviation of r. Assuming stationarity, this gives the recursion

relation ρr(τ) = –αρr(τ – 1). Since ρr(0) = 1, this implies

(18)

where τ = 0, 1, 2, …. Because α > 0, the first autocorrelation is always negative. Since the

autocorrelation is determined by the linear part of V, this is true for any differentiable

value strategy in the form of equation (14).

The trading of this strategy amplifies noise. To see this, compute the variance of the

log-returns by squaring equation (15) and taking time averages. This gives

(19)

where ση2 and σξ2 are the variances of ηt and ξt. This amplifies the external noise, since,

for any value of α, σr > σξ. Similarly, if α > 1/√2, then σr > ση. In this case the volatility

in the log-returns is greater than that in the log-values, and it amplifies the noise in the

value process.

The most surprising result is that prices do not track values. This is evident because

equation (16) shows no explicit dependence on price or value. The lack of cointegration

can be shown explicitly by substituting mt = pt – vt into equation (16), which gives

∆mt + 1 = –α∆mt – ηt + ξt

When α < 1, ∆mt is stationary and mt is a random walk. Numerical simulations and

heuristic arguments also support this when V is nonlinear.15 The intuitive reason for

ρ τ
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15In the general nonlinear case the mispricing can be written

∆mt+1 = 1/λ(V(mt+1) – V(mt))ηt + ξt

Because V is generally decreasing, this can be written

∆mt+1 = –c(mt)∆mt – ηt + ξt

where c(mt) ≥ 0. It seems that either this is a stable random process, in which case mt is a random walk,
or it is unstable, in which case mt is unstable as well.
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this is that, while a trade entering a position moves the price toward value, an exiting
trade moves it away from value. Thus, while the negative autocorrelation induced by
simple value strategies might reduce the rate at which prices drift from value, this is not
sufficient for cointegration. This is illustrated in Figure 1.

The lack of cointegration can lead to problems with unbounded positions, implying
unbounded risk. This comes about because the mispricing is unbounded, and the
position is proportional to the mispricing. Thus, if this is the only strategy present in
the market, the position is also unbounded. This problem disappears if another strategy
is present in the market that cointegrates prices and values.

The conclusion that prices and values are not cointegrated holds for any α. Thus this
problem does not disappear under arguments of market efficiency (which might adjust
α). For prices to track values, some other class of strategies must be present, e.g. the
more complicated value strategies discussed in State-dependent threshold value
strategies.

So far we have assumed ongoing changes in value. It is perhaps even more surprising
that the price fails to converge even if the value changes once and then remains
constant. To see this, consider equation (15) with ∆v1 = v and ∆vt = 0 for t > 1. Assume
ξt = 0, and for convenience let p1 = v1 = 0 and ∆p1 = 0. Iterating a few steps by hand
shows that

pt = (α – α2 + α3 + … (–α)t–1)v

If α < 1, in the limit t→∞ this converges to p∞ = αv/(1 + α). Thus, when α < 1 the price
initially moves toward the new value, but it never reaches it; when α > 1 the dynamics
are unstable.

The intuitive reason for this is that the strategy is formulated in terms of position. If

Figure 1 The log-price zt (dashed line) and the log-value vt (solid line) for the linear position

based value strategy of equation (16) with α = 0.1. While changes in the price are negatively

correlated, there is no cointegration and the price fails to track the value.
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the value suddenly increases, this strategy buys. But if the difference between price and
value persist at the same level, it maintains a constant position. Mispricings can persist
forever. The next section considers a more aggressive strategy that buys until prices
match values.

Order-based value strategies. One way to make prices track values is to make the strategy
depend on the order instead of the position. Under the simple value strategy above, if
the mispricing reaches a given level, the trader takes a position. If the mispricing holds
that level, he keeps the same position. For an order-based strategy, in contrast, if the
asset is  underpriced  he  will buy, and  he will keep buying as long as it remains
underpriced. One can define an order-based value strategy of the form

where, as before, W is a generally decreasing function with W(0) = 0. If we again expand
in a Taylor’s series, then to leading order this becomes

Without presenting the details, let me simply state that it is possible to analyze the
dynamics of this strategy and show that the mispricing has a well-defined standard
deviation. Prices track values. The problem is that the position is unbounded. This is
not surprising, given that this is such an odd and unrealistic strategy. The trader keeps
buying as long as the asset is underpriced, and by the time the mispricing goes to
zero, the position may be arbitrarily large. Furthermore, the problem of unbounded
positions occurs even in the presence of other strategies that cause cointegration of
price and value. Numerical experiments suggest that nonlinear extensions have similar
problems.

It is unrealistic to consider strategies that do not have bounded positions. Real
traders have risk constraints, which mean that their positions always have limits. I have
studied hybrid strategies, in which orders depend on the mispricing with a bound on
positions. Prices may track values for a period of time, but as soon as the bound is
reached, the price escapes. Order-based strategies do not offer a realistic solution to the
problem of prices tracking values.

State-dependent threshold value strategies. The analysis above poses the question of
whether there exist strategies that cointegrate prices and values and have bounded risk
at the same time. This section introduces a class of strategies with this property.

From the point of view of a practitioner, a concern with the simple position-based
value  strategies mentioned above  is  excessive  transaction  costs. Trades are made
whenever the mispricing changes. As shown in Section 4.1 (Market friction), random
trading tends to induce losses through market friction. A common approach to

ω ωt t t t tv p W p v+ = = −1 ,b g b g

ωt t tc p v+ = − −1 b g
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ameliorate this problem  and reduce trading frequency is  to use state-dependent
strategies, with one threshold for entering a position and another threshold for exiting
it. Like the simpler value strategies studied earlier, such strategies are based on the belief
that the price will revert to the value. By only entering a position when the mispricing is
large and only exiting when it is small, the goal is to trade only when the expected price
movement is large enough to beat transaction costs.

An example of such a strategy, which is both nonlinear and state dependent, can be
constructed as follows: assume that a short position –c is entered when the mispricing
exceeds a threshold T and exited when it goes below a threshold τ. Similarly, a long
position is entered when the mispricing drops below a threshold –T and exited when it
exceeds –τ. This is illustrated in Figure 2. Since this strategy depends on its own position
as well as the mispricing, it can be thought of as a finite state machine, as shown in
Figure 3.

Figure 2 Schematic view of a nonlinear, state-dependent value strategy. The trader enters a

short position –c when the mispricing mt = pt – vt exceeds a threshold T and holds it until the

mispricing goes below τ. The reverse is true for long positions.

Figure 3 The nonlinear state-dependent value strategy represented as a finite-state machine.

From a zero position a long-position c is entered when the mispricing m drops below the

threshold –T. This position is exited when the mispricing exceeds a threshold –τ. Similarly, a

short position –c is entered when the mispricing exceeds a threshold T and exited when it drops

below a threshold τ.
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In general, different traders will choose different entry and exit thresholds. Let trader

i have entry threshold T(i) and exit threshold τ(i). For the simulations presented here we

will assume a uniform distribution of entry thresholds ranging from Tmin to Tmax, and a

uniform density of exit thresholds ranging from τmin to τmax, with a random pairing of

entry and exit thresholds. c is chosen such that c = a(T – τ), where a is a positive

constant.16

There are several requirements that must be met for this to be a sensible value

strategy. The entry threshold should be positive and greater than the exit threshold, i.e.

T > 0 and T > τ. In contrast, there are plausible reasons to make τ either positive or

negative. A trader who is very conservative about transaction costs, and wants to be sure

that the full return has been extracted before the position is exited, will take τ < 0.

However, others might decide to exit their positions earlier, under the theory that once

the price is near the value there is little expected return remaining. We can simulate

a mixture of the two approaches by making τmin < 0 and τmax > 0. However, to be

a sensible value strategy, a trader would not exit a position at a mispricing that is

further from zero than the entry point. τmin should not be too negative, so we should

have –T < τ < T and |τmin| ≤ Tmin.

τ < 0 is a desirable property for cointegration. When this is true the price changes

induced by trading always have the opposite sign of the mispricing. This is true both

entering and exiting the position. A simulation with τmax = 0 and τmin < 0 is shown in

Figure 4. Numerical tests clearly show that the price and value are cointegrated. The

cointegration is weak, however, in the sense that the mispricing can be large and keep

the same sign for many iterations.

Figure 5 shows a simulation with the range of exit thresholds chosen so that τmin < 0

but τmax > 0. For comparison with Figure 4 all other parameters are the same. The price

and value are still cointegrated, but more weakly than before. This is apparent from the

increased amplitude of the mispricing. In addition, there is a tendency for the price to

‘bounce’ as it approaches the value. This is caused by the fact that when the mispricing

approaches zero some traders exit their positions, which pushes the price away from the

value. The value becomes a ‘resistance level’ for the price (see e.g. Edwards and Magee,

1992), and there is a tendency for the mispricing to cross zero less frequently than

it does when τ(i) < 0 for all i. Based on results from numerical experiments, it appears

that the price and value are cointegrated as long as τmin < 0. Necessary and sufficient

conditions for cointegration deserve further study.17

16This assignment is natural because traders managing more money (with larger c) incur larger
transaction costs. Traders with larger positions need larger mispricings to make a profit.

17Problems can occur in the simulations if the capital c = a(T – τ) for each strategy is not assigned
reasonably. If a is too small the traders may not provide enough restoring force for the mispricing; once
all N traders are committed to a long or short position, price and value cease to be cointegrated. If a is
too big instabilities can result because the kick provided by a single trader creates oscillations between
entry and exit. Nonetheless, between these two extremes there is a large parameter range with
reasonable behavior.
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This demonstrates that there is at least one class of value strategies that cointegrates
price and value. An encouraging property is that the strength of the cointegration
relationship is realistically weak, with mispricings that can persist for thousands of
iterations. However, it is surprising that cointegration of price and value should depend
on something as indirect as state dependence induced by the motivation to reduce
transaction costs.

Technical enhancements of value strategies. Many traders use technical signals to enhance
value strategies. A commonly used class is ‘value strategies with technical confirmation

Figure 4 The induced price dynamics of a nonlinear state-dependent value strategy with 1000

traders using different thresholds. The log-price is shown as a solid line and the log-value as a

dashed line. τmin = –0.5, τmax = 0, Tmin = 0.5, Tmax = 6, N = 1000, a = 0.001,ση = 0.01,σξ = 0.01

and λ = 1.

Figure 5 Price (solid) and value (dashed) versus time for the nonlinear state-dependent

strategy of Figure 3. The parameters and random number seed are the same as Figure 4, except

that τmin = –0.5 and τmin = 0.5.
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signals’. A trader may believe in value, but also believe that the price history provides
information about what others are doing. For instance, one can modify the threshold
value strategy by making the entry condition for a short position of the form mt > T and
pmax – pt > C, where pmax is a running maximum and C > 0. The second condition
measures a turning point in the price.  By taking the logical ‘and’ of these two
conditions, the trader hopes to reduce risk, by waiting until the market indicates that
other value traders are starting to enter their positions. Thus a pure value strategy may
begin a price reversal and a technical enhancement may reinforce it. Simulations show
that a mixture of these strategies with the strategies of the previous section make prices
track values more closely.

Heterogeneous values, representative agents, and excess volatility. So far we have assumed
a single perceived value, but given the tendency of people to disagree, in a more realistic
setting there will be a spectrum of different values. We will show that in this case, for
strategies that are linear in the logarithm of value, the price dynamics can be under-
stood in terms of a single representative agent, whose perceived value is the mean of the
group. However, for nonlinear strategies this is not true—there exists no representative
agent, and diverse perceptions of value cause excess volatility.

Suppose there are N different traders perceiving value vt
(i), using a value strategy

V(i)(vt, pt) = c(i)V(vt, pt)

where c(i) is the capital of each individual strategy. The dynamics are

Provided that the strategy is linear in the value, the dynamics will be equivalent to that
of a single agent with the average perceived value and the combined capital. This is true
if V satisfies the property

where

and

For example, the linearized value strategy of Section 3.1 (Simple value strategies)
satisfies this property. Thus, for strategies that depend linearly on the logarithm of
value, the mean is sufficient to completely determine the price dynamics, and the fact
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that opinions are diverse is unimportant. The market dynamics are those of a single
representative agent.

The situation is quite different when the strategies depend nonlinearly on the value.
To demonstrate how this leads to excess volatility, we will study the special case where
traders perceive different values, but these values change in tandem. This way we are not
introducing any additional noise to the value process by making it diverse, and any
amplification in volatility clearly comes from the dynamics rather than something that
has been added. The dynamics of the values can be modeled as a simple reference value
process vt that follows equation (13), with a fixed random offset v(i) for each trader. The
value perceived by the ith trader at time t is

(20)

In the simulations the value offsets are assigned uniformly between vmin and vmax, where
vmin = –vmax, so that the range is 2vmax.

We will define the excess volatility as

(21)

i.e. as the ratio of the volatility of the log-returns to the volatility of the noise terms. This
measures the noise amplification. If ε > 1, the log-returns of prices are more volatile
than the fluctuations driving the price dynamics. Figure 6 illustrates how the excess
volatility increases as the diversity of perceived values increases, using the threshold
value strategy of Section 3.1 (State-dependent threshold value strategies). The excess
volatility also increases as the capital increases. This is caused by additional trading due
to disagreements about value. If the market is a machine whose purpose is to keep the
price near the value, this machine is noisy and inefficient.

Influence of price on value? We have seen that it is difficult to find strategies that make
prices track values. For all of the strategies studied here the value is treated as an

v v vt
i

t
i( ) ( )= +

ε σ σ ση ξ= +r
2 2 2e j

Figure 6 Excess volatility as the range of perceived values increases while the capital is fixed at

0.035. See equation (21). The other parameters are the same as those in Figure 4.
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exogenous external input. Prices react to values, but values do not react to prices. In
reality, of course, people’s perceptions of value are influenced by prices, a phenomenon
that Soros (1987) calls market reciprocity. Since not all information is common
knowledge, the view that prices reflect new and valuable information is very sensible
(Grossman, 1989). Seen in this context, it is rational to adjust one’s perception of value
based on prices. Future work will investigate this possibility.

3.2 Trend followers

Trend followers, also sometimes called positive-feedback investors, invest based on the
belief that price changes have inertia. A trend strategy has a positive (long) position if
prices have recently been going up and a negative (short) position if they have recently
been going down. More precisely, a trading strategy is trend following on timescale θ if
the position xt has a positive correlation with past price movements on timescale θ, i.e.

A strategy can be trend following on some timescales but not on others.

An example of a simple linear trend-following strategy, which can be regarded as a
first-order Taylor approximation of a general trend-following strategy, is

(22)

where c > 0. Note that if we were to let c < 0 this would become a contrarian strategy.
From equation (8), the induced dynamics are

(23)

where α = c/λ > 1 and rt–θ = pt – pt–θ. Figure 7 shows a time series of prices.

The stability of the dynamics can be calculated by writing equation (23) in the
form ut+1 = Aut, where ut = (rt, …, rt–θ), and computing the eigenvalues of A. For θ = 1
the eigenvalues are

The dynamics are stable when α < 1. Note that this is the same stability condition
derived for the simple value strategy of equation (16).

Like value strategies, trend strategies amplify noise. The variance of the log-returns
can be computed by taking the variance of both sides of equation (23). This gives

Since ρr(θ) ≤ 1, it follows that σr > σξ. Regardless of the value of α or ρr, the variance
of the price fluctuations is larger than of the noise driving term. However, note that
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this is also true for a contrarian strategy: reversing the sign of c in equation (22) leaves
this result unchanged. Thus we see that the commonly heard statement that ‘trend fol-
lowing is destabilizing’ is misleading, since contrarian strategies are just as destabilizing.

Trend strategies induce trends in the price, but as we show below, they also induce
oscillations of equal intensity on longer timescales. For example, consider Figure 8,
which shows the autocorrelation function for Figure 7. The decaying oscillations
between positive and negative values are characteristic of trend strategies with large
lags. For τ = 1 the autocorrelation function is of order α. As τ increases it decays,
crossing zero at roughly τ ≈ θ/2 + 1. As τ continues to increase it becomes negative,
reaching a minimum at τ = θ + 1, where it is of order –α. The autocorrelation then
increases again, reaching a local maximum at τ = 2θ + 2, where it is of order α2. As τ

Figure 7 Log price versus time for trend followers with α = 0.2 and θ= 10 in equation (23).

Trend followers tend to induce short-term trends in prices, but they also cause oscillations on

longer timescales.

Figure 8 The autocorrelation function for equation (23) with α = 0.2 and θ= 10. The

complicated structure of the autocorrelation function causes short-term trends, with

longer-term oscillations.
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increases still further it oscillates between positive and negative values with period
2θ+ 2, decaying by a factor of α with every successive period.

This behavior can be understood analytically. A recursion relation for the auto-
correlation function can be obtained by multiplying equation (23) by rt–n, subtracting
the mean and averaging, which gives

(24)

Doing this for n = 0, …, θ – 1 gives a system of linear equations that can be solved for
the first θ values of ρr(τ) by making use of the requirement that ρr(0) = 1. The
remainder of the terms can be found by iteration. For example, for θ= 1, for τ = 1, …, 6
the autocorrelation function is

(25)

Solving this for a few other values of θ demonstrates that the first autocorrelation ρr(1)
is always positive and of order α, but ρr(θ+ 1) is always negative of order –α. For large θ
and small α, it is easy to demonstrate using equation (24) that the autocorrelation
follows the behavior described above. For τ ≤ θ + 1, to leading order in α,

The main point is to illustrate that the patterns trend strategies induce in prices are
not as simple as one might have thought. There are both positive and negative auto-
correlations, and they are roughly equal in magnitude. While trend strategies induce
trends over short timescales, they also induce oscillations over longer timescales. This
is a consequence of the second-order terms that are always present in the dynamics
because strategies are formulated in terms of positions rather than orders.

Like value investors, trend followers often use thresholds to reduce transaction costs.
Given a trend indicator I(pt, …, pt–θ), a nonlinear trend strategy can be defined as a
finite state machine, in a similar vein to the value strategy of Section 3.1 (State-
dependent threshold value strategies), with thresholds both for entering and existing
positions. Strategies of this type will be used in the next section.

3.3 Value investors and trend followers together

In this section we18 investigate the dynamics of trend followers and value investors
together, using the threshold value strategies described in Section 3.1 (State-dependent
threshold value strategies) and the threshold trend strategies mentioned at the end of
Section 3.2. We make a qualitative comparison to annual prices and dividends for the
S&P index19 from 1889 to 1984, using the average dividend as a crude measure of value

ρ α ρ ρ θr r rn n n+ = − −1b g b g c he j

ρ τ
α

α α α α α α α α αr b g b g b g b ge j=
+

− − − − −1

1
2 1 2 3 2 3 22 2 3 4, , , , ,

ρ τ α ατ τ θb g ≈ − − − +1 1

18The work in this section was done in collaboration with Shareen Joshi.

19See Campbell and Shiller (1988). Both series are adjusted for inflation.
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and simulating the price dynamics on a daily timescale. As a proxy for daily value data
we linearly interpolate the annual logarithm of the dividends, creating 250 surrogate
trading days for each year of data. These provide the reference value process vt in
equation (20).

The parameters for the simulation are given in Table 2. There were two main criteria
for choosing the parameters. First, we wanted to match the empirical fact that the cor-
relation of the log-returns is close to zero. This was done by matching the population
of trend followers and value investors, so that the positive correlation induced by the
trend followers is cancelled by the negative correlation of the value investors. Thus the
common parameters for trend followers and value investors are the same. Secondly, we
wanted to match the volatility of prices with the real data. This is done primarily by the
choice of a and N in relation to λ, and secondarily by the choice of vmin and vmax. Finally,
we chose what we thought was a plausible timescale for trend following ranging from
1 to 100 days.

The real series of  American prices and values are shown in Figure 9 and the
simulation results are shown in Figure 10. There is a qualitative correspondence. In
both series the price fluctuates around value, and mispricings persist for periods that
are sometimes measured in decades. However, at this point no attempt has been made
to make forecasts. While I think this is possible, it is beyond the scope of this paper.20

The point of the above simulation is that a plausible and unsophisticated choice of
parameters results in qualitatively reasonable oscillations in the mispricing.

Because of the choice of parameters there is no short-term linear structure in this

20Making forecasts require matching initial conditions. While this can be done, it is non-trivial since the
threshold value investors have a hidden state. It would also require more careful parameter estimation.

Table 2 Parameters for the simulation with trend followers and value investors in Figure 10

Description of parameter Symbol Value

Number of agents Nvalue, Ntrend 1200
Minimum threshold for entering positions Tmin

value, Tmin
trend 0.2

Maximum threshold for entering positions Tmax
value, Tmax

trend 4
Minimum threshold for exiting positions τmin

value, τmin
trend –0.2

Maximum threshold for exiting positions τmax
value, τmax

trend 0
Scale parameter for capital assignment avalue, atrend 2.5 × 10–3

Minimum offset for log of perceived value vmin –2
Maximum offset for log of perceived value vmax 2
Minimum time delay for trend followers θmin 1
Maximum time delay for trend followers θmax 100
Noise driving price formation process σξ 0.35
Liquidity λ 1
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price series. The short-term negative autocorrelation of value investors is canceled by
the positive short-term autocorrelation of trend followers. There is plenty of nonlinear
structure, however, as illustrated in Figure 11, which shows the smoothed volume21

of value investors and trend followers as a function of time. The two groups of
traders become active at different times, simply because the conditions that activate
their trading are intermittent and unsynchronized. This is true even though the capital
of both groups is fixed. Since the trend followers induce positive autocorrelations and

Figure 9 Inflation-adjusted annual prices (solid) and dividends for the S&P index of American

stock prices.

Figure 10 A simulation with value investors and trend followers. The linearly interpolated

dividend series from Figure 9 provides the reference value process. Prices are averaged to

simulate reduction to annual data. There was some adjustment of parameters, as described in

the text, but no attempt was made to match initial conditions. The oscillation of prices around

values is qualitatively similar to Figure 9.

21The smoothed volume is computed as Vt = βVt–1 + (1 – β)Vt, where Vt is the volume and β = 0.9.
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the value investors induce negative ones, there is predictable nonlinear structure for a
trader who understands the underlying dynamics well enough to predict which group
will become active. Without knowledge of the underlying generating process, however,
it is difficult to find such a forecasting model directly from the time series.

Statistical analyses display many of the characteristic properties of real financial time
series, as illustrated in Figure 11.

The log-returns are more long tailed than those of a normal distribution, i.e. there is
a higher density of values at the extremes and in the center, with a deficit in between.
This is also evident in the size of the fourth moment. The excess kurtosis

Figure 11 An illustration showing that an ecology of threshold-based value investors and trend

followers shows statistical properties that are typical of real financial time series. The upper left

panel is a ‘q–q’ plot, giving the ratio of the quantiles of the cumulative probability distribution

for the log-returns to those of a normal distribution. If the distribution were normal this would

be a straight line, but since it is ‘fat tailed’ the slope is flatter in the middle and steeper at the

extremes. The upper right panel shows a histogram of the volume. It is heavily positively

skewed. The lower left panel shows the autocorrelation of the volume and the lower right panel

shows the autocorrelation of the volatility. These vary based on parameters, but fat tails and

temporal autocorrelation of volume and volatility are typical.
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is roughly k ≈ 9, in contrast to k = 0 for a normal distribution. The histogram of
volumes is peaked near zero with a heavy positive skew. The volume and volatility both
have strong positive autocorrelations. The intensity of the long tails and correlations
vary as the parameters are changed or strategies are altered. However, the basic proper-
ties of long tails and autocorrelated volume and volatility are robust as long as trend
followers are included.

Clustered volatility has now been seen in many different agent-based models.22

It seems that there are many ways to produce this behavior. Under the dynamics of
equation (8), any strategy with appropriate delays sets up a feedback loop. Large price
fluctuations cause large trading volume, which causes large price fluctuations and so
on, generating volatility bursts. Even in the absence of linear structure, the nonlinear
structure of a value-trend ecology can cause autocorrelations in volatility. Although
oscillations in capital can enhance this, they are not necessary. I believe the vague hand-
waving arguments above can be turned into a quantitative theory giving necessary and
sufficient conditions for clustered volatility and long tails, but this is beyond the scope

of the present paper.23

The few results presented here fail to do justice to the richness of the trend follower–

value investor dynamics. We have observed many interested effects. For example, the
presence of trend followers increases the frequency of the oscillations in mispricing.
The mechanism seems to be more or less as follows: if a substantial mispricing develops

by chance, value investors become active. Their trading shrinks the mispricing, with a
corresponding change in price. This causes trend followers to become active; first the

short-term trend followers enter, and then successively longer-term trend followers
enter, sustaining the trend and causing the mispricing to cross through zero. This con-
tinues until the mispricing becomes large, but with the opposite sign, and the process

repeats itself. As a result the oscillations in the mispricing are faster than they would
be without the trend followers. Although in this case the trend followers tend to lose

money, in Section 4.3 (Technical trading as a simple way to exploit inefficiencies) we
will give an example in which the reverse is true.

k
r rt t

r

=
−

−
b g4

4
3

σ

22Some examples include Brock and LeBaron (1996), Levy et al. (1996), Arthur et al. (1997), Caldarelli
et al. (1997), Brock and Hommes (1997, 1998, 1999), Lux (1997,1998), Youssefmir et al. (1998),
Bouchaud and Cont (1998), Gaunersdorfer and Hommes (1999), Iori (1999) and Lux and Marchesi
(1999). Fat tails with realistic tail exponents have been observed by Lux and Marchesi (1999) in
simulations of value investors and trend followers based on the log-linear price formation rule; Stauffer
and Sornette (1999) have predicted realistic exponents using equation (8) with randomly varying
liquidity.

23Stauffer (1999) has suggested that these properties may vanish in the limit N → ∞. Note that market
impact is weighted by capital. If the capital is concentrated in the hands of a few agents, or many agents
using only a few strategies, the effective is small. This is particularly true if capital is distributed
according to the Pareto law (see Section 4.2, Lotka–Volterra dynamics of capital).
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4. Evolution
In the discussion so far we have treated the capital of each agent or strategy as a fixed
parameter. In reality, the capital varies as profits are reinvested, strategies change in
popularity and new strategies are discovered. Adjustments in capital alter the financial
ecology and change its dynamics, causing the market to evolve. At any point in time
there is a finite set of strategies that have positive capital; innovation occurs when new
strategies acquire positive capital and enter this set. Market evolution is driven by
capital allocation.

Market evolution occurs on a longer timescale than day-to-day price changes. There
is feedback between the two timescales: the day-to-day dynamics determine profits,
which affect capital allocations, which in turn alter the day-to-day dynamics. As the
market evolves under static conditions it becomes more efficient. Strategies exploit
profit-making opportunities and accumulate capital, which increases market impact
and diminishes returns. The market learns to be more efficient.

In this section we discuss how profits influence market evolution. Use of  the
log-linear price formation rule simplifies this, since the average profits can be written in
terms of aggregate pairwise correlations. This makes it possible to construct a trophic
web characterizing the flow of money. Reinvestment of profits leads to a simple model
for capital allocation that is a generalization of the standard population dynamics
model in biology, with species replaced by strategies and population replaced by capital.

This can be used to study the progression toward market efficiency. If there are
patterns in prices, they should disappear as capital is allocated to strategies that exploit
them. This is illustrated by studying a simple example. Myopic blind investment by even
a single agent drives profits to zero. The original pattern is eliminated, though a new
one can be created in its wake. In contrast, if the agent is smarter and more restrained,
he will maximize profits. In this case the original pattern is only reduced by half, and
thus the market is only partially efficient. If N profit-maximizing agents discover the
same pattern and use the same strategy, however, in the limit N→∞ they fully eliminate
the original pattern. In any case the progression toward efficiency is slow: order of
magnitude estimates based on typical rates for capital allocation give timescales to
achieve efficiency measured in years to decades.

4.1 Flow of money

Financial evolution is influenced by money in much the same way that biological
evolution is influenced by food. Profits play a central role. As demonstrated below, the
special properties of the log-linear price formation rule lead to simple expressions for
profitability, as well as an interesting conservation law.

Accounting. The unrealized wealth wt
(i) of agent i is

w P x ut
i

t t
i

t
i( ) ( ) ( )= +
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where ut
(i) is the money held by agent i at time t. The change in money in successive

timesteps is

The first term on the right is the money needed to buy or sell the asset. The dividend dt

allows for the possibility that it might make payments. Putting these two equations
together gives the profit gt

(i) of the ith agent at time t,

(26)

gt is also called an unrealized gain, since it is based on the value of a share marked at the
most recent price. This is an optimistic valuation, since conversion to money is risky,
and (as we will show later) market impact tends to lower the value.

Conservation laws. A financial market is a closed system if it does not interact with
other financial markets or with the external economy. This conceptual device makes
it possible to discuss conservation laws. There are two obvious conservation laws for
financial markets: conservation of shares and conservation of money. In any given
transaction, agents exchange shares and exchange money; while the transaction changes
the holdings of individual agents, the totals remain the same. Of course, real markets are
open systems where new shares can be issued, and there can be net flows of money. For
example, an asset can pay dividends, or an agent can import or remove capital. We will
see that for there to be any interesting dynamic behavior, the market must be an open
system.

The total unrealized wealth is not conserved. To see this, let the market maker’s
position be xt

(m). Conservation of shares implies that

(27)

where K is a constant. Multiplying both sides by ∆Pt+1 + dt+1 and substituting from
equation (26), the change in the total wealth at time t is

(28)

where gt
(m) is the profit of the market maker. Even if we assume dt = 0, generally ∆Pt ≠ 0.

The total wealth is strictly conserved only if K = 0 . There are indeed some assets, such
as futures and options, where each long position has a corresponding short position,
but this is not true in general.

One of the special properties of the log-linear price formation rule is that there is
a sense in which realized wealth is conserved. Define a trading cycle of period T as a
situation in which the position xt+T

(i) = xt
(i) for all i, i.e. all the positions return to some

previous value. As a special case, suppose all the directional traders begin and end a

u u P x x d xt
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cycle with zero positions, realizing all their wealth. Equation (28) makes it clear that the

total realized wealth will be conserved provided that dt = 0 and Pt+T = Pt. As a conse-

quence of equation (6), the log-linear rule has the latter property, and so conserves

realized wealth. Many temporary equilibrium models also have this property, though

this is not true in general.24

Relation between profits and strategies. For financial prices series a typical return ∆Pt/Pt–1

is on the order of a few percent. Returns are approximately equal to log returns, i.e.

This is a good approximation when the net order flow ω is small compared with λ,

and it becomes exact in the limit ∆t → 0. If we measure the position in units of money

(xt = Ptxt) and the dividend as a fraction of the previous share price (dt = dt/Pt–1), we can

rewrite equation (26) as25

(29)

To keep the notation simple going forward we will drop the tildes and hope that the

units will always be clear from the context. Substituting for rt from equation (8) and

ωt
(i) from equation (2),

(30)

This relation shows how the profits of a given strategy are determined by its relation

to other strategies. Under the simplifying assumption that the liquidity is constant

when measured in terms of money, as discussed in Section 2.3, by taking time averages

and assuming stationarity this can be rewritten as

(31)

where

r P P P Pt t t t t= − ≈− −log log 1 1∆

g r d xt
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24Temporary equilibrium models conserve realized wealth if there is a one-to-one correspondence
between positions and demands. This seems to be the case in many agent-based simulations that use
temporary equilibrium models, e.g. Levy et al. (1996) and Arthur et al. (1997). In general, however, it is
possible that the positions all return to the same value, but the demand of each agent drifts up or down
by a constant, leading to a different price. Without such drifts the price is a stationary random variable
(in contrast to real prices, which are approximately a random walk). In general, nonlinear disequi-
librium price formation rules generate random walks, even in a fully deterministic setting.

25Dividends provide an example of how factors other than trading influence prices. When a stock pays a
dividend the price typically drops by an amount roughly equal to the dividend. This is generally not
driven by selling, i.e. when dividends are paid ξt ≈ –dt.

~ ~
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(32)

and

ρx
(ij)(τ) is the correlation of xt

(i) and xt–τ
(j), and σt

(i) is the standard deviation of xt
(i). The

gain matrix G describes the profits due to interactions with other strategies, and µ(j)

describes those due to correlations with external fluctuations and the dividend stream.
Note that if the market is a closed system then µ(i) = 0 for all i.

Equations (31) and (32) provide insight into what makes a strategy profitable. The
asymmetric gain matrix G measures the profits of strategy j due to the presence of
strategy i. These profits increase when strategy j is able to anticipate strategy i [as
measured by ρx

(ij)(1)], and decrease if it is similar to strategy [as measured by ρx
(ij)(0)].

The lagged correlation measures whether the strategy is able to anticipate the majority,
and the contemporaneous correlation measures whether it is in the minority. This gives
some perspective on recent literature using the El Farol bar problem/minority game,
which only has the second term, as a financial model (Arthur, 1994; Challet and Zhang,
1997). Depending on the sign of G(ij), for any given pair of strategies there are three
possible relationships:

� Competition: G(ij) < 0 and G(ji) < 0.
� Predator–prey: i preys on j if G(ij) < 0 and G(ji) > 0.
� Symbiosis (mutualism): G(ij) > 0 and G(ji) > 0.

It is surprising that symbiosis is allowed.26

It is clear from the above derivation that the ability to decompose profits in terms of
pairwise correlations is a special property. It is exact for Kyle’s linear price formation
rule (equation 10) when positions are in shares, and is a good approximation for the
log-linear price formation rule when positions are in units of money. For more general
nonlinear price formation rules the profitabilities of individual agents or strategies are
more intimately intertwined, and cannot be decomposed pairwise.

Market friction. The tendency for uninformed trading to cause losses is called market
friction by practitioners. For large traders it is the dominant source of transaction costs.
Market friction arises because market impact systematically pushes the price in the
direction of trading. This is reflected in the fact that the diagonal terms of the gain
matrix are negative. This is true because ρ(ii)(0) = 1 and –1 ≤ ρx

(ii)(1) ≤ 1, so from
equation (32) it follows that G(ii) ≤ 0. The case where G(ii) = 0 occurs only when
ρx

(ii)(1) = 0, which is only possible if the position is constant, implying no trading.
Friction increases quadratically with size. This is clear because G(ii) in equation (32)
is proportional to σx

2. Friction also depends on trading frequency. For fixed size the

G ij
x
i

x
j

x
ij

x
ij( ) ( ) ( ) ( ) ( )= −σ σ ρ ρ1 0b g b ge j
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t t t
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26Farmer and Joshi (1999) gives an example of symbiotic strategies.
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friction is proportional to 1 – ρx
(ii)(1); if ρx

(ii)(1) ≈ 1, then the position is nearly constant
and the turnover is very slow, whereas the highest friction occurs if ρx

(ii)(1) = –1,
implying that the position alternates on successive timesteps.

Market friction implies decreasing returns to scale, with a corresponding decrease in
profits. To see this, consider a strategy j that is profitable at small scale. For this to be
true at least some of the off-diagonal terms of G must be positive. Suppose the scale
of this strategy changes according to the transformation x(j) → c(j)c(j), while all other
strategies remain fixed. The standard deviation σx

(j) scales as c(j), while ρx
(ij)(τ) remains

unchanged. Thus in equations (31) and (32) the positive contributions to the profit
from the off-diagonal terms of G grow linearly while the negative contributions from
the diagonal terms grow quadratically. The profits reach a maximum and then decline
as friction dominates. As a function of capital the profits are an inverted parabola;
the return to the strategy, defined as R(i) = 〈gt

(i)〉/c(i), decreases linearly. The capital
associated with the maximum profit level can be thought of as the carrying capacity of
the strategy. An example is given in Figure 12.

This is somewhat simplified, since in general a scale change can alter the interaction
of the strategies so that ρx

(ij)(τ) is not strictly independent of scale. In the numerical
experiments I have performed so far this dependence is relatively weak, and the
description above seems to be qualitatively correct.

Crowding lowers individual profits. A given agent’s profits are lowered by other agents
using the same strategy. To see this, assume that agents a and b have the same strategy.
Then the correlations satisfy

It is clear from equation (32) that G(ab) and G(ba) are negative provided ρ < 1. Thus
agents using similar strategies always compete—each agent’s profits are lowered by the
presence of the other. For a group of agents using identical strategies, the per-share
friction is the same as that of one agent whose capital is equal to the total capital of the
group. The per-share profit of each agent is lowered by the presence of the others. This
is true even for trend-following strategies.

This is quite different from the situation in which one agent convinces others to
follow his lead. If an agent announces his position after it is taken and others follow, this
always increases the profit of the first agent. This explicitly does not involve agents of the
same kind—the followers are different than the leader. This is true even for trend
following strategies; see the remarks in Section 4.3 (Technical trading as a simple way to
exploit inefficiencies).

Market maker profits. Under certain conditions market making is guaranteed to be
profitable. Assume that the dynamics are stationary, so that time averages are well
defined. Let the market maker’s position be xt

(m). The change in the market maker’s
position is by definition the opposite of the sum of all the directional traders’ orders, i.e.
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Letting i = m in equation (31), pulling the sum inside the average, and substituting in
terms of the autocorrelation and standard deviation of the market maker’s position (as
in the derivation of equation 32) gives

(33)

where σxm
2 and ρxm(1) are the variance and first autocorrelation of the market maker’s

position. Since –1 ≤ ρxm(1) ≤ 1, the first term is positive unless ρxm(1) = 1. Thus market
making is profitable as long as the market maker’s position is uncorrelated to the sum of
the noise process and the dividend stream. These profits are driven by the aggregate of
the directional traders’ losses due to market friction. This is clear from equation (28),
since removing dividends or drifts in the price, taking averages, gives

(34)

4.2 Evolutionary dynamics

Capital allocation. Decisions about capital allocation are made by human beings, which
makes them difficult to model exactly. However, the human fondness for money
and the tendency to rely on strategies that have been successful in the past introduce
regularities. These can be described by dynamic equations that are equivalent to a
standard model in population biology.

Some of the important factors that influence capital allocations are:
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Figure 12 The profit for a trend strategy θ= 1 invading a simple value strategy [see Sections 3.1

(Simple value streategies) and 3.2]. The horizontal axis shows the capital of the trend strategy

multiplied by 104. For the value strategy α = 0.1,ση = σξ = 0.1 and λ = 1.
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1. Reinvestment of earnings. A fraction of profits are added to existing capital.
2. Attracting capital from investors. For example, money managers solicit capital from

outside investors in return for a share of the profits.
3. Economic necessity. Strategies can have utility that is not based on expected profit.

Examples are liquidation of assets for consumption, or trading that is motivated by
risk reduction.

4. Capacity limitations. Because of market friction there is a size where profits reach
a maximum, as discussed in Section 4.1. Competent traders attempt to attain this
maximum by limiting their capital. Successful money managers close their funds
when friction becomes too large.

A simple model of reinvestment captures features of the first three factors above.

(35)

As before, ct
(i) is the capital for agent i at time t, and gt–1

(i) is the profit. The profit is
lagged by one because it is not available for reinvestment until the following period. a(i)

is the reinvestment rate. Because of the ability to attract outside capital, which depends
on past performance, it is possible that a(i) > 1.

γ(i) models the rate at which a strategy attracts capital for reasons unrelated to profit-
ability. This might be because it serves another function, such as risk reduction, or
because it appeals to human psychology. Since directional traders tend to lose money as
a group, in the absence of any inflows of money their total capital will go to zero, and the
dynamics will settle into a trivial fixed point. For the market to sustain itself there must
be an outside source of money, either dividends or positive γ(i) terms. The market must
be an open system to have any interesting behavior.

Equation (35) is just a crude first model of capital allocation. For a discussion for
how this is altered by profit maximization see Section 4.4. For other enhancements,
such as the effect of opportunity costs, see Farmer and Joshi (1999).

Lotka–Volterra dynamics of capital. Combining the results obtained so far gives a set of
dynamic equations for the evolution of capital that are analogous to those commonly
used to study population dynamics in biology. Suppose we write the positions of each
strategy in the form xt

(i) = ct
(i)xt

(i), where x is a scale-independent form of the strategy.
Substituting equation (30) into equation (35) allows us to write the time evolution of
the capital as a dynamic system.

(36)

where

This is a quadratic difference equation with time-varying coefficients.
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If reinvestment is sufficiently slow then this can be written in a simpler and more
familiar form. When a is small the capital changes slowly. The mean profit gt

(i) in a
trailing window over n iterations is

where 〈g(i)(c)〉 is the time average of the profit with the vector of capitals c = (c(1), …, cN)
fixed at their trailing mean values

〈g(i)(c)〉 can be further decomposed as in equations (31) and (32). By writing each
strategy in the scale-independent form x(i) = c(i)x(i), equation (35) becomes a differ-
ential equation of the form

(37)

where

and

These are the generalized Lotka–Volterra equations (e.g. Murray, 1990; Hofbauer and
Sigmund, 1998), which are the standard model of population dynamics. For financial
markets the population is replaced by the capital. Because g is defined in terms of scale-
independent quantities it typically varies slowly with c, and for many purposes it is
reasonable to treat it as a constant.

The Lotka–Volterra equations were originally introduced to explain oscillations in
populations with predator–prey relationships. The dynamics can be unstable or stable,
with fixed points, limit cycles or chaotic attractors. The condition for fixed points is
obtained by setting the left-hand side of equation (37) to zero, which gives a system
of coupled quadratic equations for c(i) with N unknowns. Such equations can have as
many as 2N roots and the possibility of multiple equilibria. Numerical experiments in
Farmer and Joshi (1999) show interesting examples where there appear to be chaotic
attractors.

We have so far treated the liquidity as a free parameter. As discussed in Section 2.3,
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the dynamics depend only on the non-dimensional ratios α(i) = c(i)/λ, so scaling all the
capitals by a constant is equivalent to changing λ. When these equations have a unique
attractor, the choice of λ becomes irrelevant once initial transients have died out.

Solomon and Levy (1996) and Malcai et al. (1998) have argued that the discrete
generalized Lotka–Volterra equations with a random linear driving term (µt

(i) in
equation 36) give rise to power law distributions. This provides a possible explanation
for the Pareto distribution of wealth. However, their usage of the Lotka–Volterra equa-
tions in this context was strictly ad hoc. The derivation given here lends support to the
use of the Lotka-Volterra equations as a model of relevance for financial economics. In
the limit of rapid reinvestment their assumption that µt is random may be reasonable. If
so, this would suggest that the power law concentration of wealth is purely a matter of
luck, caused by the self-reinforcing nature of an exponential amplification process with
frictional terms.

The model developed here can be connected to evolutionary game theory (e.g.
Weibull, 1996; Samuelson, 1998). The fact that the profits can be understood as the
aggregate of the pairwise interactions of the strategies is a useful simplification. Hope-
fully this will stimulate more realistic applications of evolutionary game theory to
problems in finance.

4.3 Efficiency, diversity and learning

The evolutionary view of the progression toward market efficiency. In their introductory
textbook, Sharpe et al. (1995) define market efficiency27 as follows:

A market is efficient with respect to a particular set of information if it is
impossible to make abnormal profits by using this set of information to
formulate buying and selling decisions.

The basic idea underlying the theory of efficient markets is that the act of exploiting a
pattern to make a profit alters the market so that the pattern disappears. The intuition is
articulately expressed by Cootner (1964):

If any substantial group of buyers thought that prices were too low, their
buying would force up the prices. The reverse would be true for sellers . . .
the only price changes that would occur are those that result from new
information. Since there is no reason to expect that information to be
non-random in appearance, the period-to-period price changes of a stock
should be random movements, statistically independent of one another.

Samuelson (1965) proved that ‘properly anticipated prices fluctuate randomly’ by
assuming that all agents make perfect forecasts of the mean price. Efficiency can also
be derived from first principles by assuming the existence of a rational expectations

27For reviews see Fama (1970, 1991). For some remarks about the challenges to this theory see Farmer
and Lo (1999) or Zhang (1999).
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equilibrium (e.g. Lucas, 1972). Deviations from these assumptions lead to deviations
from perfect efficiency. For example, Grossman and Stiglitz (1980) showed that this
occurs for asymmetric information, and there are many examples of inefficiency caused
by bounded rationality (e.g. Simon, 1956; Sargent, 1993).

Most work on market inefficiency is done in an equilibrium framework. By its very
nature, the assumption of equilibrium does not address the question of timescale.
At equilibrium the market is in a timeless, asymptotic state. Out of equilibrium, in
contrast, time is very much present. This leads to an evolutionary view in which the
path toward efficiency is incremental. Patterns are eliminated only as new strategies are
discovered and their capital increases. In a changing environment there is never enough
time for the market to attain perfect efficiency.

Let us sketch the progression toward market efficiency in an out-of-equilibrium
context in more detail. Assume that at some point in time, e.g. after a structural change,
there exist predictable patterns in prices, creating niches that can be exploited to make
statistically significant profits. Speculators attempt to discover these patterns. But
because the situation is new, the data are noisy and limited, the modeling process is

prone to estimation errors and the speculators’ strategies are imperfect. Nonetheless,
if some strategies are profitable their capital will increase. As their capital grows they

begin to cancel pre-existing patterns. As discussed in Section 4.4, the pre-existing
patterns are diminished. At the same time, each new strategy may also generate new

patterns, due to non-optimality or side-effects caused by second-order terms in the
price dynamics. The ecology of strategies becomes more complex, and the market
becomes more efficient. New structural changes may alter the balance, creating new
inefficiencies, so that this process repeats itself many times.

The complexity of the interactions in a financial ecology can be thought of in terms
of a trophic web, which can be visualized as a directed graph showing who profits

from whom. Each node in the graph represents a given agent (or, alternatively, a given
strategy). Each pair of nodes is linked by an arrow whose direction is determined by the

sign of G(ij) – G(ji). Attention can be focused on the most important interactions by
imposing a threshold Gmin, so that links with |G(ij) – G(ji)| < Gmin are omitted. Nodes that
have large positive values of γ(i) or profits from dividends are sources of money. The
trophic web describes the flow of money from primary users to successful speculators;
its size and depth provide a measure of the complexity of the financial ecology. Note
that this is well defined only under the approximation of a linear or log-linear price
formation rule, where profits are characterized by pairwise interactions.

To exploit patterns and make the market more efficient, either the individual strat-
egies or the trophic web describing their interactions must become more complex. The
balance that emerges depends on the cost of modeling. If modeling is free and easy, and
there is an infinite amount of data available for parameter estimation, then any rational
agent should find the unique optimal strategy taking all possible patterns into account.
But if modeling is expensive, agents will be forced to specialize.28 No single strategy will

28This point has also been stressed recently by Capocci and Zhang (1999).
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be able to find and exploit all patterns, and diversity will increase. This will be reflected
in the complexity of the trophic web.

Timescale for efficiency. If it were possible to fit perfect models on short data sets and
allocate arbitrarily large amounts of capital instantaneously, then the timescale for
markets to become efficient would indeed be rapid. But anyone who has ever tried to
forecast market prices and attract trading capital knows that this is not the case. Prices
are noisy, and model fitting is prone to estimation errors. Consequently, to detect a
pattern and be reasonably confident that it is real takes time. Similarly, even with expon-
ential growth rates of reinvestment, allocating capital takes time. Both of these factors
lead to timescales for efficiency measured in years to decades.

We will first estimate the time needed to test a good trading strategy. A relevant
measure of the quality of a strategy is its return-to-risk ratio. This is also called the
information ratio. In annual units it is the ratio of the expected annual return to the
expected standard deviation of annual returns. A strategy with an information ratio of
one is generally considered good, and two is considered excellent. Suppose that price
returns are normally distributed. For a strategy whose true information ratio is S, the
expected statistical significance  after  trading for t years compared with the null
hypothesis of random trading is S√t. Thus, to test a strategy with S = 1 and be confident
in it with two standard deviations of statistical significance requires about 4 years. Non-
stationarities and fat tails in returns lengthen this estimate. This justifies the standard
rule of thumb that a 5 year track record is needed to attract significant investment
capital.

This is further complicated by the ‘millionth monkey’ problem. If one tests twenty
random strategies on 4 years of data, the odds are good that at least one of them will
have positive trading results with two standard deviations of significance. Similarly,
with a sufficiently large number of fund managers pursuing diverse strategies, the
odds become good that some of them will have good track records over any given 4 year
period. This further lengthens the timescale needed to make intelligent capital allo-
cation decisions, and hence the timescale to achieve market efficiency.

For the market to become efficient, capital has to be allocated to good strategies. If
efficiency is achieved through pure reinvestment of profit, for a fund with a rate of
return of 25% per year, it takes roughly 10 years to increase the funds under manage-
ment by an order of magnitude. Thus, starting from $1 million and increasing to
$1 billion takes 30 years. Attracting capital from outside sources can shorten this
considerably; for example, if the capital doubles every year, this is reduced to 10 years.

Thus, we see that arguments based on either reinvestment rates or on statistical
significance lead to timescales measured in years to decades. The progression toward
efficiency is necessarily slow.

Increasingly rational expectations and evolution toward higher complexity. To make a
connection to the rational expectations framework, imagine there existed a super-agent
who knew the strategies and capital levels of all other agents, fully understood the price
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formation process and had access to all information sources. If this agent were the only
one with these powers, he could iterate equation (8), make an optimal prediction of
future prices and use this to make profits.29 Since the strategy of the super-agent
involves simulating all other strategies in the market, its algorithmic complexity30 is
necessarily greater than or equal to that of all other strategies combined.

Now suppose there were a second super-agent, unknown to the first, with knowledge
of all strategies and capital levels, including those of the first super-agent. As before,
super-agent II could simulate the market, including the behavior of super-agent I,
and make profits. One can imagine a sequence of such agents, each with successively
more knowledge. The strategies of these agents would have ever-increasing algorithmic
complexity.

If all the agents were super-agents, with perfect knowledge of each other, I conjecture
that this would lead to a rational expectations equilibrium. Game theoretic treatments
of markets (e.g. Dubey et al., 1987) support this view. The scenario envisioned above
makes it possible to think of a rational expectations equilibrium as a limit in which
each agent acquires successively more knowledge of the other agents. I suspect that the
algorithmic complexity needed to actually reach this limit is infinite, even though it may
be quite small at the limit itself. Thus, while the strategies needed to implement rational
expectations equilibrium may be very simple, the strategies needed to get there are not.

Of course, it is unrealistic to assume that an agent could know the strategies of all
other agents in detail. Good traders go to great pains to keep their strategies secret,
so that any knowledge of the strategies of others is at best vague. There can be no
super-agents in real markets. Nonetheless, the ability of agents to infer the strategies of
others may cause a progression toward greater complexity, including red-queen effects,
so that strategies have to become more and more complicated just to stay even (see e.g.
Browne, 1995).

Technical trading as a simple way to exploit inefficiencies. In a perfectly efficient market,
the use of technical trading strategies is a highly irrational, risky way to lose money.
Nonetheless, market surveys make it clear that technical strategies, of which trend strat-
egies are just one example, are widely used (Keim and Madhaven, 1995; Menkhoff,
1998). There is some evidence in the literature that there have been periods when
technical strategies made profits (Brock et al., 1992; LeBaron, 1998). This section uses
trend strategies to illustrate how technical trading strategies can provide a cheap, simple
way to exploit inefficiencies created by other strategies.31

The calculations are made simpler by using a standard technique from population

29Because the spread is assumed to be zero, for any level of predictability there is a capital level small
enough to guarantee profitability.

30The algorithmic complexity is the length of the shortest program capable of implementing a given
function.

31The ability of technical strategies to generate profits has also been emphasized by Brock and Hommes
(1997, 1998, 1999).
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genetics. If a new strategy is introduced into a pre-existing market with only a small

amount of capital and it makes a profit, then according to equation (37) its capital will

increase, and it will invade the population. The calculation of profitability is simplified

by the assumption that the capital of the invading strategy is small enough to have a

negligible effect on pre-existing price dynamics.

When do trend strategies make profits? From equation (29), providing the capital c(i)

of the trend-following strategy is negligible, the average profits are

As long as rt is stationary with 〈rt〉 = 0, the mean return 〈R(i)〉 = 〈gt
(i)〉/c(i) to the trend-

following strategy is

(38)

where σr
2 and ρr are the variance and autocorrelation of the log-returns in the absence

of the trend strategy. Thus the profits of this simple trend strategy with timescale θ are

proportional to the sum of the autocorrelations of the price returns from τ = 2 to θ.

There are many ‘fundamental’ causes for positive autocorrelations in prices, creating

opportunities for trend strategies. Some of them include gradual acquisition of large

positions to minimize market impact, chain reactions of buying or selling due to place-

ment of nearby stop loss orders or option strike prices, slow diffusion of information

and gradual unloading of large market maker positions accumulated due to random

variations in order flow.

Another cause of positive correlations are other strategies that induce them in the

price. Several examples were given in Section 3. For example, a simple value-investing

strategy induces autocorrelations of the form ρr(τ) = (–α)τ. The second autocorrelation

is positive. In a market dominated by simple value investors, equation (38) makes it

clear that a trend strategy with will make profits, as shown in Figure 12.

Trend strategies also induce positive autocorrelations. It is a widely held but errone-

ous view that, when using a trend strategy, it is to one’s advantage if others use the same

trend strategy. The discussion given in Section 4.1 (Crowding lowers individual profits)

makes it clear that this is false. To check this, note that, according to equations (38) and

(25), the returns when a trend strategy with θ = 1 tries to invade itself are proportional

to ρ(2) = –α/(1 + α) < 0. However, trend strategies with short timescales can invade

those with longer timescales. As computed in Section 3.2, for large θ a trend strategy

induces positive autocorrelations for 1 ≤ τ ≤ θ/2, and the running sum is positive for

τ < θ. Thus a trend strategy with lag θ′ < θ – 1 can invade a trend strategy with timelag θ;

the profits are maximized when θ′ = θ/2. In contrast, a trend strategy with θ′ > θ takes

losses, and cannot invade.
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It is instructive to compare to the work of DeLong et al. (1990). They show that
when a rational investor exploits trend followers, he may amplify trends in the price and
slow the process of price adjusting to value. There are several differences between their
treatment and mine. Since they used the equilibrium framework, to keep their model
tractable it was formulated in terms of only two trading periods. As a result, they did not
observe the longer-term aspects of the price dynamics, such as oscillatory behavior. The
other major difference is in the assumptions about the knowledge and capabilities of
agents that are integral to the rational expectations framework. In their model, trend
followers are assumed to be irrational noise traders, who lose money on average. In
contrast, their rational investors have perfect knowledge of the correct price function,
which implicitly involves the strategies and capitals of all the other agents in the market.
The underlying realism of such an assumption is doubtful. Technical strategies, in
contrast, involve information that is available to everyone. While their work supports
the notion that rational investors may appear to be trend followers, this analysis takes
this a step farther, by showing the circumstances in which trend strategies are profitable.

4.4 Pattern evolution

If markets are efficient, then when a pattern is discovered it should disappear as the
capital of profitable trading strategies grows. Understanding the necessary conditions
for this in the general case is difficult, since there is a cascade of effects: the new trading
alters prices, which alter trading, which alters prices, etc. This is complicated and is
beyond the scope of this paper. But it is relatively easy to solve this problem for the
special case of an isolated pattern, as done in this section.

To understand why blind investment is not an adequate model, consider a trader
with a strategy that is profitable at small size. The capital of this trader will grow until
the average profit reaches a maximum. When this occurs, there are two possibilities. If
the trader fails to understand market impact, he will continue to blindly reinvest his
profits, lowering the returns until they go to zero (see Figure 12). The original pattern
is fully eliminated, and the market becomes efficient. But if he understands market
impact, he will maximize profits by limiting his capital, and equation (37) ceases to
apply. In this case, as we will show, the pattern is reduced by half. The market does not
become efficient.

The effect of market impact on an isolated pattern in prices. To keep things simple, and to
make the results easy to visualize, we analyze the special case of a temporally isolated
pattern, of the form

where πt+1 is the mean return at time rt+1. The mean can be defined in terms of an
ensemble average of the form

Π = +K K, , , ,0 01πtb g

πt t t tr P r r+ + + += z1 1 1 1b gd
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where P(rt+1) is the probability density of the return rt+1. We will assume that to exploit
this pattern a new trader takes a new position c at time t and exits it at time t + 1.
(Exiting immediately is natural since it minimizes risk.) The assumption that the
pattern is isolated simplifies the calculation, since it means that the prices for times
t′ < t are unaltered by the new trading. Defining the pattern in terms of unconditional
averages is somewhat misleading, since  it  does not address the issue of what  is
knowable. A better approach would be to define patterns in terms of the conditional
probability based on a given information set. This complicates the calculations
considerably. Simply computing the unconditional mean is simpler, and gives an upper
bound on predictability.

The new pattern, which includes the market impact of the new trading, is of the
form

πt is nonzero because of the new trading, and πt+2, πt+3, … are nonzero because of the
cascade of price alterations that the new trading generates. The new pattern can be
computed by assuming that c is small, and that the trading strategies that generated the

original pattern are smooth functions of prices that can be expanded in a Taylor’s series.
This calculation is done in the appendix. As illustrated in Figure 13, the result is

(39)

where

(40)

Similar expressions are possible for πt+3,πt+4, etc., but as long as |κt
j| <1 the disturbance

diminishes as t increases.
κt

j is the price sensitivity. It describes the sensitivity of the price at time t + 1 to
changes in the price at time t – j. Since this depends on the sum over all the strategies,
we could also consider the sensitivity of each strategy separately. On average, value-

investing strategies have negative price sensitivity, and trend-following strategies have
positive price sensitivity. The new pattern at time t + 1 is smaller than the old pattern
providing the total price sensitivity κt

0 < 1. This is precisely the condition for linear
stability.

Figure 13 shows how the new pattern evolves as it is exploited more and more
by increasing c. It initially becomes smoother, as reflected by the fact that |πt| ≥ 0 and
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|πt+1| < |πt+1|. It eventually reaches the point where the pattern at t is stronger than the
pattern at t + 1, until the original pattern is entirely gone and the new pattern is fully
concentrated at time t.

There are two special values of to consider:

� The value of c where the profit is maximized.
� The value of c where the profit is zero.

The first case is the endpoint of market evolution if the new trader understands market
friction and limits capital to maximize profits. The second case is the expected endpoint
if profits are blindly reinvested until they go to zero. We can find these special values of c
by computing the mean profit

(41)

Assuming κt
0 < 1, as a function of c this is an inverted parabola whose maximum is

determined by the condition ∂g/∂c = 0. This occurs when

The mean profit at the maximum is approximately

and the evolved pattern is approximately

If the trader maximizes profits, the pattern at time t + 1 is exactly half as large as it was
before. In contrast, if the trader simply blindly reinvests, the profit goes to zero. The new
pattern in this case is
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This is illustrated in Figure 13. We see that as the capital is increased the pattern evolves
earlier in time. If the trader blindly reinvests, the pattern is entirely shifted to the previ-
ous timestep.
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Figure 13 The evolution of an isolated pattern as it is exploited with increasing capital. The

price sensitivities are κt
0 = κt+1

0 = –0.1 and κt+1
1 = 0. As the capital is increased to c = 0.1, the

pattern is diminished at time t + 1 and enhanced at time t. As c is increased, this trend

continues. The profit is maximized at c ≈ 0.45, and the pattern is spread between t and t + 1. If

the strategy is over-capitalized to the point that profit goes to zero, the original pattern is

entirely shifted to the previous timestep.
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Figure 14 shows how the price sensitivity affects the pattern in the case where c is
chosen to maximize profits. The new pattern at time t + 1 is half as big as it was before,
independent of the price sensitivities. The new patterns at times t and t + 2, however,
depend on the price sensitivity. If the price sensitivity is zero, πt is half the size of the
original pattern, but it is greater than half if the price sensitivity is positive and less than
half if it is negative. Patterns with positive price sensitivity are more difficult to remove
than those with negative price sensitivity. Thus patterns created by trend following are
more resistant to market efficiency than those created by value investing.

The most important result of this section is that if a single agent discovers a pattern
and maximizes profits, the original pattern is reduced by roughly half. Thus a single
agent maximizing profits does not make the market efficient all by himself. This is in

Figure 14 The effect of the price sensitivity on pattern evolution. Assume the trader adjusts his

capital to maximize profit. The pattern at time t + 1 evolves to half its original size, independent

of the price sensitivity. At time t it is less than, equal to or greater than half the size of the

original, depending on whether the price sensitivity is negative, zero or positive.

~
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contrast to blind reinvestment, which drives profits to zero. In my experience as a

practitioner, understanding market impact well enough to accurately limit capital is a

difficult statistical estimation problem that even the best traders have a difficult time

solving. The statistical errors in estimating expected profitability are so large that it is

easy to be out by a factor of two. The assumption that financial agents behave as profit

maximizers, as asserted by Friedman (1953), is highly questionable.32 It is not obvious

whether profit maximization or blind reinvestment provide the better model of reality.

Many traders in the same niche. Up until now there has been little discussion of what

happens when agents share strategies. In terms of market impact there is no difference

between one trader using a strategy and ten traders using the same strategy, each with

one-tenth of the capital. However, the coordination problem for agents to maximize

profits, and the resulting endpoint of market evolution, are quite different. A single

trader maximizing profits will diminish the pattern he is exploiting by half. In contrast,

if N traders are using the same strategy, each independently maximizing individual

profits, the pattern goes to zero in the limit N → ∞. Thus to achieve market efficiency

under profit maximization it is necessary that many traders occupy the same niche.

This is illustrated for the case of an isolated pattern discussed in the previous section.

Instead of a single new trader, assume there are N new traders, each of whom make

trades (ci, –ci) at times (t, t + 1). The mean profit for trader i is similar to equation (41),

with c replaced by Σci for the return, but ci for the position.

The maximum profit for trader occurs when

Applying this to each trader i = 1, …, N, the corresponding capital where the profits are

maximized is

The new pattern at time t + 1 is
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32See Blume and Easley (1992, 1998) for related previous work. They make the important distinction
between behavior that is sufficing (good enough to survive) versus optimal. In the context of an
intertemporal equilibrium model with capital markets included, they show that market selection can
lead to complicated dynamics and does not always lead to profit-maximizing behavior.
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and the resulting maximum profit for each trader is

Thus, as N grows larger the original pattern rapidly disappears, and the total profit
associated with the strategy goes to zero. This is in marked contrast to what would occur
if the agents were to cooperate, and limit their capital so that

In this case their individual profits are

i.e. they evenly divide the profits that would have been made with N = 1. They are
clearly much better off if they cooperate and collectively limit their capital.

Thus we see that trading resembles the prisoner’s dilemma and other games in which
the competitive equilibrium results in lower utility than the cooperative equilibrium.
When agents control their capital to maximize profits, the number of agents becomes
important. Assuming each agent maximizes profits independently, the market becomes
efficient in the limit as the number of agents goes to infinity.

5. Conclusions

5.1 Summary of results

I have tried to show how a simple nonequilibrium price formation rule and a simple
capital allocation rule can be used to study market evolution. While neither of these are
fully realistic, they may be the simplest choices that give reasonable results. They can be
written in the form

(42)

The first equation is the log-linear price formation rule with additive noise ξt, written
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with the function xt
(i) giving the position of agent i separated into a scale-independent

term xt
(i) and the capital ct

(i) > 0. pt is the logarithm of the price and λ is the liquidity.

The second equation is the blind reinvestment capital allocation rule. The profits gt
(i)

are reinvested at rate a(i). For nontrivial asymptotic price dynamics, there must be an

inflow of capital, either because the asset pays positive dividends dt, or because γ(i) > 0

for at least some values of i. The third equation is the standard accounting rule for

profits, written in terms of the price Pt.

It is necessary to specify the functions

which give the decision rule or strategy for each agent. In Section 3 I have investigated

the price dynamics of several value and trend strategies with fixed capital (a(i) = γ(i) = 0).

For simple value strategies that take a positive position when an asset is underpriced

and a negative position when it is overpriced, prices do not track values. For some more

complicated value strategies with state dependence, prices weakly track values when

parameters are in the appropriate range. When there is a diversity of different views

about value, the dynamics of linear value strategies can be represented in terms of those

of a single representative agent, but for more nonlinear strategies this is not possible,

and numerical experiments show an amplification of noise that can be interpreted as

excess volatility.

The difference of positions at different times in equation (42) gives rise to second-

order oscillatory terms that complicate the price dynamics. On a short timescale value

strategies induce negative autocorrelations whereas trend strategies induce positive

autocorrelations. On longer timescales trend strategies induce strong negative auto-

correlations, corresponding to oscillations in the price. A combination of value invest-

ors and trend followers can result in price dynamics with weak linear structure, but

interesting nonlinear structure. This gives rise to qualitatively reasonable boom–bust

cycles, long-tailed price fluctuations and clustered volatility.

The log-linear price formation rule has special properties that simplify the flow of

money. Equation (42) can be rewritten to express the dynamics of capital in terms

of the generalized Lotka–Volterra equations (equations 36 and 37). The profits of a

given strategy can be decomposed into the sum of its pairwise correlations with other

strategies (equations 32 and 37). Each correlation term can be further decomposed into

two parts: the first measures whether a strategy anticipates the majority and the second

determines whether it is in the minority. Profits are limited by market friction, which is

caused by self-impact on the prices. If the capital c(i) of a given strategy is varied while

that of all other strategies is held fixed, a strategy either loses for all c(i) or makes profits

when c(i) is small, that reach a maximum at some cmax
(i) and then decline (see Figure 12).

Under certain assumptions, the market maker always makes a profit. Another special

property of the log-linear rule is conservation of realized wealth. This implies that

the profits of the market maker come from market friction. The derivation of the

~ ~ , , ,( ) ( )x x p p It
i

t t t
i

+ −=1 1 Ke j

~
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Lotka–Volterra equations makes the analogy between financial markets and biological
ecologies precise, and the pairwise decomposition of profits makes it clear how a
market can be regarded as an ecology of interacting agents.

The progression toward market efficiency caused by the evolution of capital can be
studied within this framework. If there are patterns in prices, the market becomes
efficient as new strategies find them and cause them to disappear. Several different
estimates lead to a timescale for market efficiency measured in years to decades. For the
special case of an isolated pattern I have computed several properties of the progression
toward greater efficiency that illustrate several interesting points. Patterns created by
trend following are more difficult to eliminate than patterns caused by value investing.
If agents maximize profits, a single agent will only reduce a pre-existing pattern by
roughly half, and the market becomes efficient only in the limit that N agents exploit the
same pattern.

5.2 Closing remarks

This paper develops an analogy between financial and biological ecologies. This analogy
depends in part on the assumption that financial strategies are evolving automata.
Strategies can be arbitrarily complex, but the key is that (like a genome) they can be
regarded as algorithms that evolve with experience. This is in contrast to the prevailing
view in neoclassical economics that the essence of a financial agent is the ability to
reason and solve problems de novo. Of course, the behavior of real financial agents
involves a mixture of both experience and fresh reasoning. My view is strongly
influenced by my own experience as a practitioner: the investment strategy used by
Prediction Company is based completely on evolving automata. Decisions are made
entirely by computers without human intervention, using programs developed through
a historical trial-and-error process. Of course many investors do use de novo reasoning,
but my guess is that in the vast majority of cases, experience and culture dominate over
freshly generated logic. There is nonetheless a spectrum of possibilities between these
two poles: by properly articulating both extremes and exploring the middle, perhaps we
can arrive at a view that correctly characterizes real people in real markets.
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Appendix
This derives the main result in Section 4.4 (The effect of market impact on an isolated
pattern in prices). We want to compare an old pattern to a new one that includes the
additional trades (c, –c) at times (t, t + 1). The new pattern is of the form

Because of the assumption that the old pattern is isolated, the new pattern is unchanged
for times t′ < t . However, for t′ ≥ t the new trades affect any pre-existing trades, and the
impact can propagate arbitrarily far into the future. The impact depends on the
aggregate of the trading strategies that created the original pattern. The new pattern is

That is, for time t the new pattern is entirely caused by the new trading, which produces
return c/λ, and at time t + 1 it is the sum of that caused by the original trading strategies
acting on the altered prices and that caused by the exiting trade –c. Similarly, the new
log-prices are
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If ω is a smooth function whose derivatives exist, then, providing c is small enough,
we can approximate it using Taylor’s theorem:

(43)

where derivatives are evaluated at the original prices (pt+1, pt, …) and δpt = pt – pt. By
assumption,

Furthermore, δpt = c/λ. Using Taylor’s theorem again,

We can define the price sensitivity as in equation (40), and make the further
approximation that

Collecting these relations together and substituting into equation (43) gives equation
(37).
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