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Abstract. We investigate the random walk of prices by developing a simple model relating the properties
of the signs and absolute values of individual price changes to the diffusion rate (volatility) of prices at
longer time scales. We show that this benchmark model is unable to reproduce the diffusion properties
of real prices. Specifically, we find that for one hour intervals this model consistently over-predicts the
volatility of real price series by about 70%, and that this effect becomes stronger as the length of the
intervals increases. By selectively shuffling some components of the data while preserving others we are
able to show that this discrepancy is caused by a subtle but long-range non-contemporaneous correlation
between the signs and sizes of individual returns. We conjecture that this is related to the long-memory
of transaction signs and the need to enforce market efficiency.
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1 Introduction

The random walk was originally introduced in finance in
1900 [1] as an empirical model for prices. It is still widely
used in finance for many practical problems, such as op-
tion and interest rate pricing. The conceptual justification
for the random walk description of asset price is market
efficiency, i.e. that asset price changes should be unpre-
dictable [2]. Even if prices do not follow a perfect random
walk, for many purposes this is an excellent approxima-
tion: While there may be some structure in the drift term,
so that occasionally clever arbitrageurs can predict and
exploit small deviations from randomness, basically the
direction of price movements is very close to random.
The well-known non-random exception is the diffusion
rate of prices, which in finance is usually called the volatil-
ity. As first carefully documented by Engle [3], volatil-
ity varies in a way that is quite persistent in time. Its
autocorrelation function dies out slowly with an asymp-
totic power law decay for long times, so that it is a long-
memory process [4-7]. The question of what causes varia-
tions in volatility is more complicated, and remains unan-
swered. Standard equilibrium theories in economics say
that volatility should be caused by new information [8],
but new information is difficult to measure, and while a
few recent studies seem to support this on longer time
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scales [9,10], there are several studies on shorter time
scales suggesting that the correlation between volatility
and news is weak [11-13].

An alternative approach is to look for immediate
causes of volatility. For example, Clark suggested mod-
eling volatility as a subordinated stochastic process, in
which the transaction rate varies' and consequently the
diffusion rate also varies [14]. Variations in the transac-
tion rate correlate with volatility, so this theory is at least
partially correct [15-17]. However, a more recent study
shows that, at least on a time scale of fifteen minutes,
this is not the dominant correlate of volatility. Instead,
there is a much larger effect due to the size of individual
price changes, which is only weakly correlated with the
size of transactions and with the transaction frequency
[18]. The long-memory properties of absolute individual
price changes also match those of volatility much better
than those of volume or transaction frequency.

This story is further complicated by the fact that
transaction signs have long-memory [19-22]. Transactions
can be labeled as having a positive sign if they are ini-
tiated by a buyer, i.e. if the trading order that triggers
the transaction is from a buyer, and similarly as having a
negative sign if they are initiated by a seller. Sequences of

! Variations in the transaction rate may or may not depend
on information, thus this idea neither supports nor contradicts
the standard theory.
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transaction signs have long-memory, i.e. their autocorrela-
tion functions C(7) decay as a power law C(7) ~ 7~ with
v < 1, typically with v = 0.5. This strong autocorrelation
structure implies that the signs of transactions are quite
predictable using a trivial algorithm. Since buyer initiated
transactions tend to push the price up and seller initiated
transactions tend to push it down, this suggests that prices
should also be predictable, which would contradict market
efficiency. To prevent this from happening there must be
a non-trivial relationship between transactions and price
responses.

We add to this story by studying a simple model for
the aggregation properties of non-zero price returns at
the level of individual transactions. In particular, we view
price changes as the steps in a generalized random walk.
The term generalized random walk refers to the possibility
that there are correlations in the signs of the steps and
their sizes. Under the assumption that price changes are
permanent, we develop a model predicting the expected
volatility in terms of properties of the generalized ran-
dom walk, such as the number of steps, the average step
size, the variance of the step sizes, the imbalances between
positive and negative steps, and sums of the autocorrela-
tion functions for step signs and sizes. Restated in terms
of prices, the model is based on the number of non-zero
price changes, the average size of price changes, the vari-
ance of the size of price changes, the imbalance between
up and down price movements, and the sum of the au-
tocorrelation functions of price change sign and size. We
show that this model performs poorly in describing the
volatility of real data. We show that the predictions of
this model for volatility are much too large, by the or-
der of 70% of the empirical volatility, and that the cause
of this over-prediction is the relationship between lagged
signs and sizes of the price changes.

The paper is organized as follows. In Section 2 we de-
velop a model for the random walk of prices, and in Sec-
tion 3 we describe the data. In Section 4 we test the hy-
potheses of the model, and in Section 5 we present our
main empirical results. Finally, Section 6 we summarize
the paper, discuss what the results mean, and outline fu-
ture work.

2 The generalized random walk

Price returns are defined in logarithmic terms as r; =
logp: — logpi_1, where p; is the price at time ¢. In this
paper we will take p; to be the midprice, i.e. the average
of the best quoted buying and selling prices. We consider
only non-zero returns r; # 0, and define the time variable
t under the transformation ¢ — ¢ + 1, which occurs when-
ever the midprice changes. That is, except where otherwise
stated, throughout this paper time is just a counter label-
ing the number of non-zero steps for the random walk of
price changes.
An additive stochastic process

Rn = Zrt; (1)
t=1

where the increments r; are stationary, defines what we
will call a generalized random walk. We use this term to
distinguish it from a “pure” random walk, in which the
increments 7; are independent and identically distributed
(IID). Our purpose here is to make a model for the squared
volatility, which we will measure as the variance Var(R,,),
in terms of the underlying properties of a generalized ran-
dom walk with increments r;. For this purpose it is useful
to decompose the individual returns as r; = s;w;, where s;
is the sign of the return at time ¢, and wy is its magnitude.

2.1 Assumptions

To make our analysis tractable we make the following as-
sumptions:

(i) s is a Bernoulli variable V¢.

(ii) wy is a strictly positive random variable V¢.

(iii) Both {s;} and {w;} are wide sense stationary pro-
cesses?.

(iv) {s:} and {w;} are independent stochastic processes.

The first two assumptions are simply the decomposition
of any single step into its sign and its magnitude. The
third assumption of stationarity is important because it
implies that autocorrelation function cx (¢, u) of the pro-
cess X between times t and u only depends only on the
lag, i.e. cx(t,u) = cx(|t — u]). Note that in making this
assumption we are also assuming that the first two cen-
tral moments of the distribution of w; are finite (this is
automatic for s¢). The fourth hypothesis greatly simpli-
fies calculations, since under the independence hypothesis
the joint probability density function of any given subset
of these variables can be factorized. We will see that the
first three assumptions are fine, but the fourth assumption
is not well-satisfied for the real data.

2.2 Derivation of formula for volatility

The squared volatility is the variance of R,, and can be
computed as

Var(R,) = E[R?] — E[R,]?
n n n 2
=FE ZSiU}iZSjU}j —E Zsiwi]
i=1 j=1 i=1
= ZE [wi] +2 ZIE [sisjwiw;]

- (Z E[&'W]) ;

where E[.] represents the expected value.

2 A stochastic process {X+}, where t belongs to the integers,
is wide sense stationary (WSS) if (i) E [X7] < co V¢, (i)
E [Xt] = ux Vi, (7,7,7,) E [XtXu] =K [Xt+th+h] Vi, u,h.
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Let the means of s and w be ps and p, and the
variances be o2 and o2. Since both the s-process and
the w-process are statlonary we can write E[s;] = s,
Elw;] = pw, and E[w?] = o2 + u2 for all i. Moreover
wy and s; are independent processes and we can factorize
E[s,w;] = E[s;]E[w;] and E [s;s;w;w;] = E [s;5;] E [w;w;].
Then we obtain

Var(R,) =

n 2
Z(O’ + uw +2 ZE si8;] B [w;w;] — (Z usuw>

[ 1<J

= nlo2 + p] +2 Z [eaiy §)02 + 2] [ew(i, )02, + pd]
1<J
—n’ 1l g,

where ¢4(i,7) and ¢,(7,7) are the autocorrelation func-
tions of the sign process and the size process. The sum in
the second term can be written explicitly as

Z [es(i, )02 + 2] [ew (i, )o, + p2] =
1<j
n n
02 D eslisew (i) + 1Y culing) | on,

i<j 1<j

n n
+ o2 i)+ Y pd |l (2)

i<j 1<j

Let f: N X N — R be a generic function of two integer
variables. If f(i,7) = f(|i — j|) for all 7 and j, then

qunfj(l—) F(0). (3)

1<J =1

Since both s; and w; are stationary, equation (3) holds
both for ¢s and ¢,,. Then, we can use (3) in (2) and equa-
tion (2) becomes

V= Var(R,) = n{ [1 + QUst,w( )+ 2M5K (n )} m2u

+ [1+ 202Ky (n) — pi2] ui} , (4)

where Kou(n) = Sy (1= 3) es(Dew(), Ku(n) =
e (1— )Cw(l) and Ky(n) = >, (1- )cé(l) are

functions of the number of steps n and depend on the au-
tocorrelation structures of both signs and sizes. We have

introduced the notation V' to emphasize that we will be
using this as a prediction for squared volatility.

3 Data

To test the validity of equation (4) we used data for
four highly capitalized stocks traded in the London Stock

Exchange (LSE). The stocks are Astrazeneca (AZN),
LLoyds Tsb Group (LLOY), Shell Transport & Trading
Co. (SHEL), and Vodafone Group (VOD). The investi-
gated period spans more than two years ranging from May
2, 2000 to December 31, 2002, for a total of 675 trading
days. Summary statistics are given in Table 1. The to-
tal number of non-zero returns in the sample is roughly
300 000 for each of these stocks. There is on average about
one price change per minute, but the trading activity fluc-
tuates considerably and in some periods there can be more
than a price change per second.

We have left out the first and last fifteen minutes of
each trading day. This choice avoids biases due to the ex-
tremely high activity at market opening and closing. If we
include data for the full day we get practically the same
results. Overnight price changes are omitted. We have
also performed tests removing outliers and found that this
makes no difference in our results.

4 Testing the hypotheses of the model

Before testing the model we first test the hypotheses of the
model given in Section 2.1. In particular we check the sta-
tionarity of both s; and w;, compute their autocorrelation
functions, and test their independence.

To test for stationarity we used two standard tests that
are widely employed in time series analysis, the augmented
Dickey-Fuller test and the Phillips-Perron test [23]. Both
are tests for the null hypothesis that a time series z; has
a unit root a, i.e. that under the model =y = ax;—1 + n,
where 7; is IID noise, a = 1. We applied these tests to
the entire time series of signs and sizes. For each stock
we found that for both s; and w; the null hypothesis of
non-stationarity (unit root) can be rejected with a p-value
smaller® than 2 x 10716, We also applied these tests to in-
dividual days of data and found that the null hypothesis
of non-stationarity can be rejected with a p-value smaller
than 0.05 in more than the 95% of the days, with essen-
tially the same results for all stocks. We therefore con-
clude that both s; and w; can be considered stationary
processes.

The wide-sense stationarity hypothesis assumes that
the first two central moments s, and o2, of w; are finite.
Since these also appear in equation (4) it is particularly
important to test that this is true. Many studies have
shown that the probability distribution of price returns
have power law tails, i.e. that P(jry| > z) ~ 27 as ¢ —
o0, with 0 < a < oo. This implies that moments less
than « exist, but moments greater than « are infinite. In
particular, o > 2 is sufficient to guarantee that p,, and o2,
are both well-defined. Early studies suggested that price
returns are described by Levy distributions, which have
a < 2 [24,25], but most later studies have measured o > 2
[26-28]. Just to make sure, we estimated the tail index

3 Such a strong result is partially due to the high number of
data points in each sample, but we also due to the fact that the
computed root is always much smaller than one (about 10™2)
in both cases.



4 The European Physical Journal B

Table 1. Summary statistics of the stocks in our sample. Sample size, tail index « (Hill estimator) and Hurst exponent H of
the absolute returns. Note that the quoted significance intervals are standard errors and are much too small.

AZN LLOY SHEL VOD
Number of trades x10° 5.5 5.7 5.9 9.4
Number of non-zero returns x10° 3.2 2.7 2.7 3.4
Trades per 15 min. 23.7 24.9 25.4 43.5
Non-zero returns per 15 min. 14.8 12.4 12.6 15.6
Tail index of w; () 3.0+£0.04 3.24+0.05 3.7+0.05 8.6 £0.11
Hurst exponent of w; (H) 0.80 £0.006 0.80+0.005 0.85+0.011 0.86=+0.014

using a Hill estimator [29] as presented in Table 1. In
every case we find* that o > 2. We conclude that the first
and the second moment of the absolute return distribution
exist.

We also studied the autocorrelation structure of s; and
wy. For each stock we estimated autocorrelation functions
from the entire sample. We find that the autocorrelation
of the absolute returns w; is a long-memory process, i.e.,
the autocorrelation function is asymptotically a power-
law ¢, (t) =~ ¢y (0)t~7 with 4 < 1. In contrast, the sign
process has some non-zero structure in its autocorrelation
function, but is not long-memory.

To give a qualitative feeling for the long-memory na-
ture of the size process, in Figure la we show Cy (1) =
i1 Cw(t), the cumulative sum of the autocorrelation
function up to time 7, in double logarithmic scale. This
makes it clear that a power law is a reasonable approxi-
mation and that the integral is increasing without bound.
The long-memory nature of a stochastic process can also
be characterized by the Hurst exponent H, which is re-
lated to the decay exponent v as v = 2 — 2H [30]. From
a statistical point of view, computing the Hurst exponent
is a more reliable indicator of long-memory than working
with the autocorrelation function. We estimate H by us-
ing the Detrended Fluctuation Analysis (DFA) introduced
in [31]. In Table 1 we report the value of the Hurst expo-
nents of w; for different stocks®. We see that H is always
in [0.80, 0.86], which implies v € [0.28,0.40].

In contrast the autocorrelation function of the signs s;
looks completely different. In every case, after at most 10—
15 trades the size of the autocorrelation function becomes
small enough to be within statistical error. Even though
each coefficient is small, there may be trends in which
nearby coefficients tend to be positive or negative, so we
have once again computed Cs(7) = >°;_; ¢s(t), as shown
in Figure 1b. We cannot plot this in double logarithmic
scale because of negative values, so we show it in linear
scale. We see that there are some persistent effects involv-
ing the accumulation of small terms in the autocorrelation

4 For Vodafone we find a ~ 8.5, which calls into question
whether the returns really obey a power law at all. In any case
this does not matter for our results here.

5 Given the long-memory of the absolute returns we expect
that the variance of the absolute return on smaller time scales
(e.g. 15 min or 1 h) will be slightly smaller than the variance
computed on the entire sample and we indeed observe this.
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Fig. 1. Cumulative autocorrelation functions for the four in-
vestigated stocks. Top: Absolute returns in double logarithmic
scale. Bottom: Signs in linear scale.

function; in some cases C,(7) takes hundreds of transac-
tions to approach its asymptotic value. Nevertheless, the
behavior is dramatically different from the long-memory
behavior of Cy,(7), as evidenced by the fact that for the
signs C5(1000) < 0.6 in every case, whereas for the sizes
C(1000) > 40, and in some cases is closer to 400.

In conclusion absolute returns are persistent in time, in
agreement with other studies that have found that volatil-
ity is a long-memory process [4-7]. On the contrary signs
are weakly autocorrelated, which they have to be to be
compatible with market efficiency. The signs of non-zero
returns should not be confused with the signs of trans-
actions, which as we have already mentioned form a long
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Fig. 2. Lagged cross-correlation function of signs and absolute
returns for the stock AZN. The dashed line is the 20 standard
error.

memory process [19,20]. We say more about the possible
importance of this in the conclusions.

Finally we need to test the hypothesis of independence
between signs and absolute returns. This is not a sim-
ple task. A first naive approach is to compute the cross-
autocorrelation function between the two time series, as
shown for AZN in Figure 2. For all the stocks in the sam-
ple the cross-correlations are practically negligible, always
less than or comparable to the noise level® at any lag. This
might suggest that the assumption of independence be-
tween signs and sizes is a good approximation. However,
note the patterns in the autocorrelations in Figure 2. This
suggests that even if the individual coefficients are small,
there may be significant integrated effects, and in any case
one must also worry about nonlinear interactions. Later
we will show that independence of the sign and size is not
a good assumption.

5 Estimating volatility
5.1 Testing the model

Our goal is to test the validity of equation (4). To do this
we divide the original time series into non-overlapping real
time intervals of length 7" = 15 min, 1 h and 4 h. We mea-
sure the total price return R; during each interval ¢ and
use R? for that interval as a proxy for its empirical squared
volatility. We compare this to the squared volatility pre-
diction V; based on equation (4). For each interval i we
estimate ps, 05, [y, 0w, and count the number of non-zero
returns n;. In contrast, under our stationarity assumption
Ks(n;) and K, (n;) should not depend on which interval
we choose. This is fortunate because there is not enough
data in an individual interval to get a statistically stable
estimate. Thus we estimate them for each stock using data

6 This is computed as the 20-error, where o = 1/v/N and N
is the length of the series.

Expected
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‘ \‘ T T

R T .

Fig. 3. The ratio p of the empirical volatility and the ex-
pected volatility from equation (5) as a function of the ex-
pected volatility. The simulated data are shown as squares and
the real data for AZN as circles. Data are binned on the z-axis
using quantiles with 10 bins and 538 intervals per bin. The
error bars represent standard errors. The weighted mean value
for the simulation is close to one, whereas the real data is closer
to 0.6.

from the entire time series. Finally, we compute the ratio

R?
o

pi = (5)

If all the assumptions of the model were correct we should
find that p = 1 to within statistical errors.

As a reality check and to get a feeling for the expected
statistical errors, we begin by testing this procedure on
simulated data that is guaranteed to satisfy the assump-
tions of Section 2.1. To make the test as realistic as possi-
ble we use the AZN original series of signs, and we gener-
ate a long-memory series of artificially generated absolute
returns with a Hurst exponent H = 0.7 using a standard
fractional Brownian motion generator. This series explic-
itly differs from the real data in that it is log-normally
distributed, and the sign and absolute return series are
guaranteed to be independent of each other. We ran the
simulation on one hour intervals, i.e. we sample the ar-
tificial series in non-overlapping sub-intervals with same
number of non-zero returns as in the one-hour sampling
of the original AZN series. Our results are reported in Fig-
ure 3 where we show the average value of p conditioned on
the expected volatility. We consistently find p ~ 0.9. Thus
while our derived model gives a reasonable approximation,
within ten percent of the correct answer, the predicted
volatility is consistently slightly higher than the observed
volatility.

We have performed extensive numerical experiments
to understand the source of this bias that make it clear
that the origin of this effect is statistical bias. Because
these data are highly skewed and display long-memory,
when the variance is estimated with a finite number of
data points the estimate of the volatility is systematically
low. This effect enters both for the empirical volatility
itself (which we are measuring based on the price change
across the whole interval, i.e. effectively with one point),
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Table 2. Ratio of expected volatility to empirical volatility p for real data and shuffling experiments.

AZN LLOY SHEL VOD
15 min 0.75+£0.04 0.84=£0.05 0.79+0.06 0.7140.03
Real data 1h 0.58 £0.01 0.66+0.01 0.63+0.01 0.61+0.01
4h 0.55+£0.02 0.57£0.03 0.57+0.04 0.59+0.03
Signs 0.92£0.01 094£0.02 0.93£0.02 0.93£0.02
Shuffling (1 h)  Absolute returns 0.97 +£0.02 1.00+0.03 0.97+0.02 0.91+0.05
Returns 1.02+£0.02 1.014+0.02 1.024+0.02 1.02+0.03
Block Signs and Sizes 0.92£0.02 095£0.02 0.96=+0.02 0.93£0.02
shuffling (1 h)  Returns 0.68£0.02 0.75+£0.02 0.71+0.01 0.7340.03

and for the variance of the sizes of the returns. Thus there
is some cancellation, but the effect is more severe for the
volatility, and hence the estimates tend to be low. While
we might be able to correct for this effect and improve
the accuracy of our measurements, this is not trivial and
the other effects that we observe later in this paper are
sufficiently large that they dominate.

In contrast for real data the expected volatility is al-
ways significantly larger than the empirical volatility, as
shown in Figure 3 for AZN and reported for the other
stocks in Table (2). For 1-h sampling the ratio p for AZN
is close to 0.6 and for the four stocks in our sample is in
the range p € [0.58,0.66]. As shown in Table 2 this over-
estimation also holds at all time scales, and gets worse as
the time scale increases. We conclude that our model con-
sistently over-estimates the squared volatility by roughly
20% or more at 15-min time scales and more than 67% at
four hour time scales.

5.2 Shuffling experiments

To understand why the model of equation (4) fails we
perform a series of shuffling experiments at the one hour
time scale. In each case we randomly rearrange the order
of a given component of the real data while preserving
everything else.

1. Signs. We randomly shuffle the sign time series. This
destroys the autocorrelation of the signs and any cross-
correlation between signs and absolute returns, but
preserves the autocorrelation of the absolute returns.

2. Absolute returns. We shuffle the absolute return time
series. This destroys the autocorrelation of absolute
returns and any cross-correlation between signs and
absolute returns, but preserves the autocorrelation of
the signs.

3. Returns. We shuffle returns, i.e. we shuffle both signs
and absolute returns together, using the same permu-
tation. This destroys the autocorrelation of both signs
and sizes, and at the same time preserves their con-
temporaneous cross-correlation while destroying any
lagged cross-autocorrelations.

In each case we measure p just as we did for the real data.

The results of these experiments are shown in Table 2.
We see that when we shuffle signs we observe p ~ 0.93
fairly consistently for each stock. This is smaller than one,

but much larger than the p observed for real data. This
result is consistent with the bias we observed earlier in
our benchmark simulating long-range correlated absolute
returns. However, this effect is much too small to explain
the large discrepancy with the real data — there must be
another, much larger effect in the real series of absolute
returns.

In contrast, when we shuffle the absolute returns or
the returns, we observe p ~ 1 in almost every case’ From
this we conclude that the underestimation we observe is
neither caused by the autocorrelation of signs nor is it
caused by the contemporaneous cross correlation of signs
and absolute returns.

These experiments suggest that the main cause of the
over-estimation of volatility is the lagged relationship be-
tween signs and absolute returns®. To test this more ex-
plicitly we perform block shuffling experiments, in which
we randomly interchange the order of blocks of length L
while leaving everything the same within each block. We
performed two different tests:

1. Blocks of signs and sizes separately. We shuffle blocks
of signs and absolute returns separately. This preserves
the individual autocorrelation structures up to the
block size, but destroys any cross correlation between
the signs and the absolute returns®.

2. Blocks of returns. We shuffle blocks of returns, keep-
ing the same ordering of signs and sizes within the
block. This preserves all the autocorrelations and all
the lagged cross-correlations between signs and abso-

lute returns up to the size of the blocks.

7 The exception is when we shuffle absolute returns for Voda-
fone we observe p = 0.91 4+ 0.05. We don’t know whether this
implies that our error bars (based on standard errors) are too
optimistic or whether there is some effect that makes Vodafone
different from the other stocks.

8 This result is in line with that obtained by Weber [32],
who noticed that the size of the largest price changes is over-
estimated if one assumes that signs and absolute returns are
independent. Moreover, this result is in some way similar to
the leverage effect [33], even if it is usually observed on daily
or even weekly time scales, while our result holds at individual
transaction time scale.

9 When we shuffle blocks of signs and absolute returns sepa-
rately we use different block boundaries for each. Thus a sign
for a given return is typically matched with a different absolute
return.
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Fig. 4. Block shuffling experiments for AZN. We compare shuf-
fling blocks of returns to shuffling blocks of absolute returns
and signs separately using blocks of length L = 60. Data are
binned along the z-axis based on their expected volatility in 10
bins with 538 one hour intervals per bin. The ratio p plotted
on the vertical axis indicates whether equation (4) correctly
predicts the volatility for the shuffled data sets in each range
of the expected volatility; error bars are standard errors. A
horizontal black line at y = 1 is shown for comparison. Cir-
cles are for shuffling blocks of returns, triangles for shuffling
signs and absolute values separately, and the dashed lines are
the mean values of each. Shuffling signs and absolute returns
separately destroys their lagged cross-correlation, and results
in correct estimates, while shuffling returns produces a similar
over-estimation to that observed for the real data. This sup-
ports our hypothesis that a subtle correlation between absolute
returns and signs causes the overestimation for real data.

The results for blocks of length 60 are summarized for
AZN in Figure 4 and for all stocks in Table 2. In the
experiments where we shuffle blocks of signs and sizes we
find p € [0.92,0.96]. As we previously observed when shuf-
fling signs alone with block lengths of one, p is slightly
smaller than one, consistent with simulations reported in
Section 5.1 Thus, even if there is a small tendency for
equation (4) to overestimate volatility and for the proxy
R2 to underestimate volatility, our simulations show that
this effect is small and is not sufficient to explain the dis-
crepancy observed in the real data. This once again sug-
gests that preserving the relationship between signs and
sizes is important.

In contrast, when we test this directly by shuffling
blocks of returns while preserving the relationship between
signs and sizes, we find a significant overestimation of the
volatility with p ~ 0.7. This value is significantly smaller
than one, making it clear that we have captured most of
the effect, but it is still larger than the value p ~ 0.6 that
we observed for the real data. We believe that this is be-
cause the block length L = 60 is not long enough. To test
whether this is the case in Figure 5 we plot the estimated
value of p for a block return shuffling experiment for each
stock as a function of block length. As for our previous
experiments with L = 1, we observe p &~ 1. As L increases
p decreases fairly steadily in every case. However, this de-
crease is fairly slow, and at the maximum block size length
L = 600 it has still not decreased to the low value p ~ 0.6

p - ratio expected vol. to empirical vol.

1000
L - block length

Fig. 5. Dependence of p on block size for return shuffling ex-
periments for one hour intervals. In the original time series
blocks of length L are shuffled, preserving the ordering of signs
and absolute returns within each block. The ratio p, which
measures the amount by which equation (4) over-estimates
volatility, is plotted as a function of the block size L for each
of the four stocks in our sample. This shows that as the block
size increases the estimates decrease fairly steadily toward the
observed values for the real data.

observed for the full sample. We believe this is because the
maximum block length, which is limited by our ability to
obtain good statistical sampling, is still not long enough.
This suggests the time scale of the cross-correlations be-
tween signs and absolute returns is very long.

6 Discussion and conclusions

Under the assumptions given in Section 2.1 we have de-
rived a formula for volatility under a simple generalized
random walk model. For a time interval of any given
length, this formula relates volatility to simple properties
of the underlying random walk, in particular the number
of non-zero returns, and the mean and variance of the signs
and absolute values of returns, as well as their integrated
autocorrelation.

We find that this formula consistently overestimates
volatility. We have shown that the main reason for this is
because our formula assumes that return signs and return
sizes are independent. In contrast, for the real data there
are long-range correlations, which are small at any given
time lag but large when integrated over long time scales.
This effect is quite large: The overestimate is roughly 67%
for one hour intervals, and even more for four hour inter-
vals.

These results are surprising because they indicate that
the volatility is reduced by almost a half due to a subtle
long range interaction between the signs of returns and
their sizes. This is particularly surprising because it in-
volves signs of returns and not the signs of transactions.
The signs of transactions form a long-memory process
while the signs of returns do not. Thus the evidence seems
to indicate that there is a very-long range interaction be-
tween return signs and sizes, even though return signs
themselves do not show long-memory properties.
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We believe that this interaction is closely related to
the interaction that takes place between the transaction
signs and returns as studied in references [19-22], but at
this point we have not been able to show this. Intuitively
this can be seen as follows: because of the long-memory
properties of transactions, which make their signs highly
predictable, returns must compensate so that they are
not equally predictable. One way to make this happen,
as stressed by Bouchaud et al., is that price impacts are
temporary, i.e. when transactions happen prices change
but this change decays slowly with time. Alternatively, as
stressed by Lillo and Farmer, price changes can have a
permanent component, but this component varies based
on the predictability of transaction signs: When a future
transaction is very likely to be a buy, the size of buy re-
turns is much larger than the size of sell returns. These
two approaches have been shown to be equivalent [34]. In
either case it suggests a reduction of volatility relative to
what one would expect under an unconditional permanent
impact model such as the one we have developed here. In
a future paper we hope to show that this is indeed the
reason for the missing component of volatility, or alterna-
tively provide a better explanation.
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