Generative Models for Complex Network Structure

Aaron Clauset
@aaronclauset
Computer Science Dept. & BioFrontiers Institute
University of Colorado, Boulder
External Faculty, Santa Fe Institute
• what is structure?

• generative models for complex networks
 ➤ general form
 ➤ types models
 ➤ opportunities and challenges

• weighted stochastic block models
 ➤ a parable about thresholding
 ➤ checking our models
 ➤ learning from data (approximately)
what is structure?

- makes data different from noise
 - makes a network different from a random graph
what is structure?

• makes data different from noise
 ▶ makes a network different from a random graph

• helps us compress the data
 ▶ describe the network succinctly
 ▶ capture most relevant patterns
what is structure?

• makes data different from noise
 ▶ makes a network different from a random graph

• helps us compress the data
 ▶ describe the network succinctly
 ▶ capture most relevant patterns

• helps us generalize,
 from data we’ve seen to data we haven’t seen:
 i. from one part of network to another
 ii. from one network to others of same type
 iii. from small scale to large scale (coarse-grained structure)
 iv. from past to future (dynamics)
statistical inference

- imagine graph G is drawn from an ensemble or **generative model**: a probability distribution $P(G|\theta)$ with parameters θ
- θ can be continuous or discrete; represents structure of graph
statistical inference

- imagine graph G is drawn from an ensemble or generative model: a probability distribution $P(G \mid \theta)$ with parameters θ
- θ can be continuous or discrete; represents structure of graph
- inference (MLE): given G, find θ that maximizes $P(G \mid \theta)$
- inference (Bayes): compute or sample from posterior distribution $P(\theta \mid G)$
statistical inference

- imagine graph G is drawn from an ensemble or generative model: a probability distribution $P(G \mid \theta)$ with parameters θ
- θ can be continuous or discrete; represents structure of graph
- inference (MLE): given G, find θ that maximizes $P(G \mid \theta)$
- inference (Bayes): compute or sample from posterior distribution $P(\theta \mid G)$

- if θ is partly known, constrain inference and determine the rest
- if G is partly known, infer θ and use $P(G \mid \theta)$ to generate the rest
- if model is good fit (application dependent), we can generate synthetic graphs structurally similar to G
- if part of G has low probability under model, flag as possible anomaly
• what is structure?

• **generative models for complex networks**
 ▶ general form
 ▶ types models
 ▶ opportunities and challenges

• **weighted stochastic block models**
 ▶ a parable about thresholding
 ▶ checking our models
 ▶ learning from data (approximately)
generative models for complex networks

general form

\[P(G \mid \theta) = \prod_{i<j} P(A_{ij} \mid \theta) \]

assumptions about “structure” go into \(P(A_{ij} \mid \theta) \)

consistency

\[\lim_{n \to \infty} \Pr \left(\hat{\theta} \neq \theta \right) = 0 \]

requires that edges be conditionally independent [Shalizi, Rinaldo 2011]
\mathcal{D}, $\{p_r\}$

probability p_r
Pr(i, j connected) = p_r

= $P(\text{lowest common ancestor of } i, j)$
\[\mathcal{L}(D, \{p_r\}) = \prod_{r} p_r^{E_r} (1 - p_r)^{L_r R_r - E_r} \]

- \(L_r\) = number nodes in left subtree
- \(R_r\) = number nodes in right subtree
- \(E_r\) = number edges with \(r\) as lowest common ancestor
classes of generative models

- stochastic block models
 \[P(A_{ij} | z_i, z_j) \] depends only on types of \(i, j \)
 originally invented by sociologists [Holland, Laskey, Leinhardt 1983]

 many, many flavors, including
 - mixed-membership SBM [Airoldi, Blei, Feinberg, Xing 2008]
 - hierarchical SBM [Clauset, Moore, Newman 2006, 2008]
 - restricted hierarchical SBM [Leskovec, Chakrabarti, Kleinberg, Faloutsos 2005]
 - infinite relational model [Kemp, Tenenbaum, Griffiths, Yamada, Ueda 2006]
 - restricted SBM [Hofman, Wiggins 2008]
 - degree-corrected SBM [Karrer, Newman 2011]
 - SBM + topic models [Ball, Karrer, Newman 2011]
 - SBM + vertex covariates [Mariadassou, Robin, Vacher 2010]
 - SBM + edge weights [Aicher, Jacobs, Clauset 2013]
 + many others
classes of generative models

• latent space models
 nodes live in a latent space, $P(A_{ij} | f(x_i, x_j))$ depends only on vertex-vertex proximity

 many, many flavors, including
 logistic function on vertex features [Hoff, Raftery, Handcock 2002]
 social status / ranking [Ball, Newman 2013]
 nonparametric metadata relations [Kim, Hughes, Sudderth 2012]
 multiple attribute graphs [Kim, Leskovec 2010]
 nonparametric latent feature model [Miller, Griffiths, Jordan 2009]
 infinite multiple memberships [Morup, Schmidt, Hansen 2011]
 ecological niche model [Williams, Anandanadesan, Purves 2010]
 hyperbolic latent spaces [Boguna, Papadopoulos, Krioukov 2010]
opportunities and challenges

- richly annotated data
 - edge weights, node attributes, time, etc.
 - = new classes of generative models

- generalize from \(n = 1 \) to ensemble
 - useful for modeling checking, simulating other processes, etc.

- many familiar techniques
 - frequentist and Bayesian frameworks
 - makes probabilistic statements about observations, models
 - predicting missing links \(\approx \) leave-k-out cross validation
 - approximate inference techniques (EM, VB, BP, etc.)
 - sampling techniques (MCMC, Gibbs, etc.)

- learn from partial or noisy data
 - extrapolation, interpolation, hidden data, missing data
opportunities and challenges

- only two classes of models
 - stochastic block models
 - latent space models

- bootstrap / resampling for network data
 - critical missing piece
 - depends on what is independent in the data

- model comparison
 - naive AIC, BIC, marginalization, LRT can be wrong for networks
 - what is goal of modeling: realistic representation or accurate prediction?

- model assessment / checking?
 - how do we know a model has done well? what do we check?

- what is v-fold cross-validation for networks?
 - Omit n^2/v edges? Omit n/v nodes? What?
• what is structure?

• generative models for complex networks
 ▶ general form
 ▶ types models
 ▶ opportunities and challenges

• weighted stochastic block models
 ▶ a parable about thresholding
 ▶ learning from data (approximately)
 ▶ checking our models
functional groups, not just clumps

• social “communities” (large, small, dense or empty)
• social: leaders and followers
• word adjacencies: adjectives and nouns
• economics: suppliers and customers
nodes have discrete attributes
each vertex i has type $t_i \in \{1, \ldots, k\}$
$k \times k$ matrix p of connection probabilities
if $t_i = r$ and $t_j = s$, edge $(i \rightarrow j)$ exists with probability p_{rs}
p not necessarily symmetric, and we do not assume $p_{rr} > p_{rs}$
given some G, we want to simultaneously
label nodes (infer type assignment $t : V \rightarrow \{1, \ldots, k\}$)
learn the latent matrix p

classic stochastic block model
classic stochastic block model

model

assortative modules

instance

Pr(node in i connected to node in j) = p_{i,j}

likelihood

\[P(G | t, \theta) = \prod_{(i,j) \in E} p_{t_i,t_j} \prod_{(i,j) \notin E} (1 - p_{t_i,t_j}) \]
thresholding edge weights

- 4 groups
- edge weights $\sim N(\mu_i, \sigma^2)$ with $\mu_1 < \mu_2 < \mu_3 < \mu_4$
- what threshold t should we choose? $t = 1, 2, 3, 4$
• 4 groups
• edge weights $\sim N(\mu_i, \sigma^2)$ with $\mu_1 < \mu_2 < \mu_3 < \mu_4$
 ➤ set threshold $t \leq 1$, fit SBM
• 4 groups
• edge weights $\sim N(\mu_i, \sigma^2)$ with $\mu_1 < \mu_2 < \mu_3 < \mu_4$
• set threshold $t = 2$, fit SBM
• 4 groups
• edge weights \(\sim N(\mu_i, \sigma^2) \) with \(\mu_1 < \mu_2 < \mu_3 < \mu_4 \)
 ➤ set threshold \(t = 3 \), fit SBM
• 4 groups
• edge weights $\sim N(\mu_i, \sigma^2)$ with $\mu_1 < \mu_2 < \mu_3 < \mu_4$
 ➤ set threshold $t \geq 4$, fit SBM
weighted stochastic block model

adding auxiliary information:

- each edge has weight $w(i, j)$
- let $w(i, j) \sim f(x|\theta)$

\[
= h(x) \exp(T(x) \cdot \eta(\theta))
\]

- covers all exponential-family type distributions:
 - bernoulli, binomial (classic SBM), multinomial
 - poisson, beta
 - exponential, power law, gamma
 - normal, log-normal, multivariate normal
weighted stochastic block model

adding auxiliary information:

each edge has weight \(w(i, j) \)

let \(w(i, j) \sim f(x|\theta) \)

\[
= h(x) \exp(T(x) \cdot \eta(\theta))
\]

examples of weighted graphs:

- frequency of social interactions (calls, txt, proximity, etc.)
- cell-tower traffic volume
- other similarity measures
- time-varying attributes
- missing edges, active learning, etc.
weighted stochastic block model

- block structure: \(\mathcal{R} : k \times k \rightarrow \{1, \ldots, R\} \)
- weight distribution: \(f \)
- block assignment: \(z \)
- weighted graph: \(G \)
- likelihood function:
 \[
P(G \mid z, \theta, f) = \prod_{i<j} f(G_{i,j} \mid \theta_{\mathcal{R}(z_i, z_j)})
 \]

- given \(G \) and choice of \(f \), learn \(z \) and \(\theta \)

Technical difficulties:
- degeneracies in likelihood function
 (variance can go to zero. oops)
approximate learning

- edge generative model $P(G \mid z, \theta, f)$
- estimate model via variational Bayes
 - conjugate priors solve degeneracy problem
 - algorithms for dense and sparse graphs
approximate posterior distribution
\[\pi^*(z, \theta \mid G) \approx q(z, \theta) = \prod_i q_i(z_i) \prod_r q(\theta_r) \]

estimate \(q \) by minimizing
\[D_{KL}(q \| \pi^*) = \ln P(G \mid z, \theta, f) - \mathcal{G}(q) \]

where \(\mathcal{G}(q) = \mathbb{E}_q(\mathcal{L}) + \mathbb{E}_q \left(\log \frac{\pi(z, \theta)}{q(z, \theta)} \right) \)

for (conjugate) prior \(\pi \) for exponential family distribution \(f \)

taking derivative yields update equations for \(z, \theta \)

iterating equations yields local optima
checking the model

synthetic network with known structure

- given synthetic graph with known structure
- run VB algorithm to convergence
- compare against choose threshold + SBM (and others)

compute Variation of Information (partition distance)

\[\text{VI}(P_1, P_2) \in [0, \ln N] \]

in this case \(\text{VI}(P_1, P_2) \in [0, \ln k^* + 1.5] = [0, 3.1] \)
checking the model

synthetic network with known structure

• variation of Newman’s four-groups test
• $k^* = 5$ latent groups
 $n_r = [48, 16, 32, 48, 16]$
• Normal edge weights:
 \[f = \mathcal{N}(\mu_r, \sigma_r^2) \]

in this case $\text{VI}(P_1, P_2) \in [0, \ln k^* + 1.5] = [0, 3.1]$
learn better with more data

increase network size N

- fix $k = k^*$, $f = N$
- bigger network, more data

we keep the n_r/N constant
learn better with more data

increase network size N

- fix $k = k^*$, $f = N$
- bigger network, more data
- WSBM converges on correct solution more quickly
- thresholding + SBM particularly bad

we keep the n_r / N constant
learning the number of groups

vary number of groups found k

- fix $f = N$
- too few / many blocks?
In fact, Bayesian marginalization will correctly choose $k=k^*$ in this case.
learning despite noise

increase variance in edge weights σ_r^2.

- fix $k = k^*$, $f = \mathcal{N}$
- bigger variance, less signal
increase variance in edge weights σ_r^2.

- fix $k = k^*$, $f = \mathcal{N}$
- bigger variance, less signal
- WSBM fails more gracefully than alternatives, even for very high variance
- thresholding + SBM particularly bad
• single-scale structural inference
 mixtures of assortative, disassortative groups

• inference is cheap (VB)
 approximate inference works well

• thresholding edge weights is bad, bad, bad
 one threshold (SBM) vs. many (WSBM)

• generalizations also for sparse graphs, degree-corrections, etc.
generative models

• auxiliary information
 node & edge attributes, temporal dynamics (beyond static binary graphs)

• scalability
 fast algorithms for fitting models to big data (methods from physics, machine learning)

• model selection
 which model is better? is this model bad? how many communities?

• model checking
 have we learned correctly? check via generating synthetic networks

• partial or noisy data
 extrapolation, interpolation, hidden data, missing data

• anomaly detection
 low probability events under generative model
Generative models

- Auxiliary information
 - Node & edge attributes, temporal dynamics (beyond static binary graphs)

- Scalability
 - Fast algorithms for fitting models to big data (methods from physics, machine learning)

- Model selection
 - Which model is better? Is this model bad? How many communities?

- Model checking
 - Have we learned correctly? Check via generating synthetic networks

- Partial or noisy data
 - Extrapolation, interpolation, hidden data, missing data

- Anomaly detection
 - Low probability events under generative model
Thank you to:

Cris Moore (Santa Fe)
Mark Newman (Michigan)
Cosma Shalizi (Carnegie Mellon)

Funding from:

Aicher, Jacobs, Clauset, “Adapting the Stochastic Block Model to Edge-Weighted Networks.” ICML (2013)
Moore, Yan, Zhu, Rouquier, Lane, “Active learning for node classification in assortative and disassortative networks.” KDD (2011)
fin