
Network Analysis and Modeling, CSCI 5352

Lecture 7

Prof. Aaron Clauset

19 September 2013

1 Degree distributions and data

A great deal of effort is often spent trying to identify what functional form best describes the de-
gree distribution of a network, particularly the upper tail of that distribution. The most popular
model for degree distributions is, by a large margin, the power law, but alternatives include the
log-normal, the stretched exponential (also called the Weibull), a power-law distribution with an
exponential cutoff in the upper tail, and the exponential.

The table below gives the mathematical definitions of many distributions. It is important to
remember that degrees are discrete variables, and their distribution is described by a discrete
function. That said, however, when xmin is very large, the difference between a continuous and
a discrete distribution with the same functional form is often negligible, meaning that we can
approximate the discrete distribution with the continuous form.
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Table 1: Definition of the power-law distribution and several other common statistical distributions,
many of which are proposed as models of degree distributions in networks. For each distribution
we give the basic functional form f(x) and the appropriate normalization constant C such that
∫∞
xmin

Cf(x) dx = 1 for the continuous case or
∑∞

x=xmin
Cf(x) = 1 for the discrete case.
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2 Power-law distributions and data

Suppose we have some empirical observations {xi} = {x1, x2, . . . , xn} to which we would like to fit
a power-law distribution. Recall from the previous lecture that there are two parameters we need
to know to do this: α, the “scaling” exponent, and xmin, the smallest value for which the power
law holds.

2.1 Estimating α

For the moment, let us assume that the correct value of xmin is known. To choose a good value of
α, we apply the principle of maximum likelihood, which chooses the parameter (often generically
denoted θ) that maximizes the likelihood of observing exactly the data {xi} under the model.1

This is done by writing down a function for the likelihood, which depends on the data, the model,
the model’s parameters.

L({xi} | θ) =
n
∏

i=1

p(xi | θ) (1)

We then want to find the value of θ that maximizes this function, with respect to the model and
data. Note that one can always carry out this calculation, given a choice of a model, but the result
of this exercise gives you no information about whether the model is a good fit to the data.

For complex models, it may not be possible to derive a closed-form expression for α in terms of
{xi}. However, the power law is not a complex model. Thus, substituting the normalized form of
the power law’s p(x) into Eq. (1), we have

lnL({xi} |α, xmin) = ln

[

n
∏

i=1

α− 1

xmin

(

xi
xmin

)−α
]

= n ln

(

α− 1
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)

− α
n
∑

i=1

ln

(
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xmin

)

.

Taking the logarithm of the likelihood, the log-likelihood, is a standard trick that often makes the
function easier to work with by replacing product series with summations and allowing computers
to more easily represent ridiculously tiny values like 10−3000. More importantly, the parameter that
maximizes the log-likelihood is the same as the parameter that maximizes the likelihood. (Why?)

For more complex models, the next step is often to numerically maximize this function, perhaps
using non-parametric techniques like Nelder-Mead or hill-climbing techniques like gradient ascent.

1There are generally very good reasons to choose parameters in this way, in part because the maximum likelihood
choice is a consistent estimator, meaning that θ̂ → θ in the limit of n → ∞, and its errors are asymptotically normal.
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However, the power law is not a complex model, and we may derive an analytic expression for the
location of its maximum. Solving ∂L/∂α = 0 for α yields

α̂ = 1 + n

/

n
∑

i=1

ln

(

xi
xmin

)

, (2)

which is the MLE or maximum likelihood estimator for α. (We use “hatted” variables to denote
estimates derived from data, and unhatted variables to denote the true, but generally unknown,
value.) Via similar process,2 we may also derive a closed-form expression for an estimator of the
standard error in α̂, which is σ̂ = (α̂− 1)/

√
n+O(1/n).

A crucial assumption of this process was that the value of xmin was already known, but in general we
do not know this value. Why is this a crucial assumption? Because xmin is not a normal parameter
and instead truncates or “censors” the data by changing the number of observations that go into
the likelihood function. (What would the maximum likelihood choice of xmin be, and why is this a
useless result?) Thus, we need a different method by which to choose xmin.

2.2 Estimating xmin

There are a number of methods by which to choose xmin, the most common of which is to choose
it subjectively, by eye. But, this is clearly not a good method.

2.2.1 The Hill plot

For the power-law distribution in particular, a common technique for choosing xmin is a visual
diagnostic called a “Hill plot,” which plots α̂ as a function of xmin. In the power-law region of the
distribution, the value of α should not increase or decrease even if we raise xmin, and thus we should
choose the smallest value of xmin that produces such a stable estimate of α. This is generally done
visually.

This approach, however, is not reliable. For instance, the figure below shows a Hill plot for n = 500
observations drawn iid from a shifted power law p(x) ∼ (k + x)−α, with k = 15 and α = 2.5. The
inset shows the ccdf of the actual data, and the shaded region shows the uncertainty around α̂.3

Visually, things start getting flat somewhere around xmin ≈ 20, but this yields α̂ ≈ 2, which is
a much heavier tail than is accurate. The deviations from the true value of α for smaller values
of xmin are caused by fitting a power-law model to non-power-law data. The deviations for larger
values of xmin are caused by variance induced by sampling noise and by a small-sample bias in

2The standard error is given by the curvature of the likelihood function at the location of the maximum, which is
related to the Fisher information of the function.

3Recall from the last lecture that for a shifted power law, there is no correct choice of xmin, above which the
distribution follows a pure power law. Thus, we simply want a value of xmin that yields an accurate estimate of α.
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the MLE for α. For these data, there is no visually obvious choice of xmin that yields an accurate
estimate of α because these two regions overlap significantly.

An important message: In the wide world of data analysis techniques, there are many visual
diagnostic tools with a similar flavor. Be forewarned: keep your statistical wits about you when
you encounter them. Looking at your data is a very important part of data analysis because there
is no better way to get an unfiltered view of your data than through simple visualizations: plot
distributions of quantities, scatter plots of attributes, time series, etc. The trouble enters when
visualization requires the use of statistical tools that have built-in assumptions, and all data anal-
ysis tools have built-in assumptions. Thus, here is an important take-home message: in order

to properly understand your data, you must first properly understand your statistical tools—what
input they require, what input they expect, what operations they perform on the data, why they
performs those and not other operations, and finally how to interpret their output correctly.

The Hill plot diagnostic fails to provide a reliable way to choose xmin because it does not provide a
quantitative and objective answer to the following questions: (i) How do we automatically quantify
“flat”-ness? And, (ii) given a method to do so,4 how “flat” is flat enough?

4For instance, we could fit a first-order polynomial to the α̂(xmin) function above some choice of x̂min.
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2.2.2 KS minimization

An objective and fairly accurate solution to choosing xmin is to minimize a so-called “goodness-of-
fit” (gof) statistic,5 such as the Kolmogorov-Smirnov (KS) statistic, between the fitted model and
the data. The KS statistic is defined as

D = max
x∈{xi}

∣

∣

∣
P (x | θ̂)− S(x)

∣

∣

∣
, (3)

where P (x | θ̂) is the theoretical cdf, with parameters θ̂ and S(x) is the empirical cdf.6

The KS statistic (typically denoted D) measures the largest deviation in cumulative density be-
tween the fitted model and the empirical data. Figure 6 shows an example of this for a small sample
from an exponential distribution. Because D measures the maximum deviation, a small D implies
that the fitted model P (x | θ̂) is everywhere close to the empirical distribution. (What kind of devi-
ations is the KS statistic most sensitive to? For what kind of questions might this behavior matter?)

Suppose that we choose xmin too small, such that we fit the power-law model to the distribution’s
“body” where there are significant deviations from the power-law behavior. In this case, D should
be large because of a model-misspecification bias coming from the data. On the other hand, if
we choose xmin too large, and fit the model to the distribution’s extreme tail where there are few
observations, statistical noise or variance in the data will make D large. We want to choose an
xmin somewhere between these two, that is, we want a balanced tradeoff between bias on the one
hand and variance on the other. This can be done by choosing x̂min in the following way:

x̂min = inf
xmin∈{xi}

(

max
x≥xmin

|P (x | α̂, x̂min)− S(x)|
)

. (4)

That is, we estimate x̂min as the value of xi that yields the smallest maximum deviation. Note that
each time we increase our candidate value for x̂min, we need to truncate the data set, re-estimate
α and compute a new theoretical cdf and empirical cdf.

Using the same data in the figure above, we can apply the KS minimization technique, whose re-
sults are shown in the figure below, with the KS-minimizing value of xmin marked, and the resulting
power-law tail fit shown in the inset with the data (ccdf). The result is x̂min = 39.79; at this choice,
we get α̂ = 2.41 ± 0.16, which is indistinguishable from the true value of α = 2.5.

5There are a number of other such statistical measures, including the sum-of-squared errors, the weighted-KS
statistic, etc. These statistics generally have nice mathematical properties, which is why there are commonly used.
In general, all such measures quantify the magnitude and direction of deviations between the observed data and some
model of that data.

6The empirical cdf S(x) is a step function, defined as the fraction of the full data set that are less than some value
x. If we sort our data so that x1 < x2 < · · · < xn, then the corresponding y values for the empirical cdf, in order,
are {0, 1

n
, 2

n
, . . . , n−1

n
}.
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Figure 1: The empirical cdf (solid line; n = 40, λ = 0.050) and the maximum likelihood theoretical
cdf (dashed line; λ̂ = 0.053 ± 0.009) for an exponential distribution. The black line shows the
maximum absolute deviation between the two functions of D = 0.066623.

This agreement between α̂ and α, however, is slightly misleading. Recall that these data are drawn
from a shifted power law with k = 15; at x̂min ≈ 30 = 2k, there should still be non-trivial devia-
tions from the pure power-law model we’re fitting (see previous lecture). In fact, I had to generate
several synthetic data sets to get a fit this good. The point here is that KS minimization pro-
vides an automatic, objective and fairly reliable way to choose xmin, even if it doesn’t provide the
strong guarantees we expect from a maximum likelihood procedure (nice things like asymptotic
consistency and normally-distributed errors). That is, this is a nice example of a reasonable com-
putational procedure for solving a tricky statistical problem.

Numerical experiments on its accuracy show that it is also quite reliable, although it does make
some mistakes. It is good that we can measure and quantify these mistakes on synthetic data,
where we know what the true underlying structure is: it means we can learn how to interpret its
behavior, including potential mistakes, when we apply it to empirical data with unknown structure.
In general, these numerical experiments suggest that when applied to data drawn from a distribution
that actually exhibits a pure power-law form above an explicit value of xmin, KS minimization is
slightly conservative, i.e., it tends to choose an x̂min & xmin. Unfortunately, it is not known in
general how large a bias KS minimization can exhibit or even why, mathematically, it works so well
in practice.
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2.3 Degree distribution of the political blogs network

Recall from the last lecture that the political blogs network has a heavy-tailed degree distribution
(see figure below). Taking the KS-minimization approach for choosing xmin and using the discrete
power-law distribution as the model (see Table 1 above), we may estimate the best-fitting power-
law tail model for these data. The resulting fit chooses a portion of the upper tail that visually
looks linear on the log-log plot, for degrees k ≥ 78 (which is 113 vertices, or about 7.6% of the
network), and yields α̂ = 3.65. The right-hand panel of the below figure shows the result, with a
vertical line drawn at x̂min.

1 4 16 64 256
10

−4

10
−3

10
−2

10
−1

10
0

P
r(

K
≥ 

k)

degree, k

7



Network Analysis and Modeling, CSCI 5352

Lecture 7

Prof. Aaron Clauset

19 September 2013

These numbers for the fitted power-law model do not shed any light on whether the model is a
good fit to the data. To answer that question, other tools are needed. For example, we could use
a statistical hypothesis test to determine whether drawing values iid from the fitted model is a
plausible explanation for the values or a likelihood ratio test to determine whether this model is a
better fit than some alternative model.

3 At home

1. Read Chapter 8.1–8.4 (pages 235–260) in Networks

2. Next time: social and biological networks
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