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1 Spatial networks

Many real-world networks exist physically in space. That is, with each vertex we can associate a
location in some Rd space. Spatial networks are the general term we apply to describe a class of
networks that includes transportation networks (road, rail, subway, air travel, walking, shipping,
etc.), distribution networks (oil and gas, power, etc.), and more. What makes spatial networks
different from many other types of non-spatial networks is that the probability that two vertices
are connected depends in some way on their distance, e.g., vertices separated by a smaller distance
may be more likely to be connected. This simple difference can have a dramatic impact on the
structure of networks.

In addition to the more common questions of the structure and dynamics of spatial networks,
another property that spatial networks sometimes exhibit is that of navigability. Time allowing,
we will also examine the kinds of general patterns found in real-world networks that are embedded
in 2- or 3-dimensions, as most of our spatial networks are.

2 Navigable networks

Stanley Milgram’s famous small-world experiment demonstrated two interesting properties of social
networks. First, it demonstrated that short paths exist between arbitrary pairs of individuals. This
property is what we typically mean when we say a network is a small world (although formally, we
mean that the diameter of a network model grows like O(log n).)

The experiment also demonstrated that these paths can often be found using only local informa-
tion, i.e., without resorting to a global search algorithm (like Dijkstra or BFS) in order to know
how to route a packet from one vertex to another. Instead, each vertex can make a reasonably
accurate guess about which of its neighbors is “closer” to an arbitrary destination in the network.
Repeating this process at each vertex serves to route the packet across the network.

This property is, in fact, somewhat remarkable. In a simple random graph model, the only way to
find a short path between some i and j is to run a full global search algorithm, i.e., to explore the
entire network first. But Milgram’s experiment demonstrated that social networks are embedded
within a kind of latent space, and that each individual stores in their mind a rough map of this
latent space and their approximate position on that map. Then, by working together, individuals
can effectively route information across the social network without either knowing the entire social
network structure or running an expensive global search algorithm in their mind.

This is what we mean by navigability, that when each vertex only stores local information about the
network, i.e., information about its local portion of the graph, there exists a protocol or algorithm
that can use this local information to find short paths between pairs of individuals.
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2.1 The Kleinberg model

To formalize the notion of navigability, Jon Kleinberg took the Watts-Strogatz model and modified
the way the rewired links were rewired so that they improved the navigability of the network.

Unlike the Watts-Strogatz model, this model assumes that the underlying lattice network was fixed
in place, and that these “local” links cannot be rewired. On top of this lattice (whose presence
guarantees that some path, albeit likely a long one, always exists between some pair of vertices)
is layered a set of “long-range links” that provided routing short cuts. In the simplest version of
the model, we assume a k-dimensional lattice, in which each vertex connects to all of its nearest
neighbors. Thus, a vertex has 2k local connections, and these connections are bidirectional: if
u connects to some v, then v also connects back to u. In addition, each vertex u has a single
long-range link (u, x), where x is chosen uniformly among the vertices some distance d away (see
Figure 1 on the next page).1 If we choose d uniformly at random, then this model is very similar
to the Watts-Strogatz model.

Kleinberg showed that when the probability distribution for link lengths follows a power law with
exponent r = k, i.e., the scaling exponent r equals the dimensionality of the lattice, then a greedy
routing algorithm will deliver packets in O(logk n) steps. (While this time is not O(log n), it is still
quite fast, even for large networks.) The greedy routing algorithm is simply the same procedure
Milgram gave his participants: examine all of your neighbors (the 2k local neighbors and the 1
long-range neighbor) and forward the packet to the neighbor whose remaining distance to the tar-
get is smallest; repeat at the new location until the destination is reached.

The general outline of this result can be seen as follows. For some source u and target v, we want
to route a packet between the two. At each intermediate vertex x, we will make the greedy choice,
choosing to forward the packet to the vertex among x’s neighbors that minimizes the remaining
distance to v. We divide the total routing time into a sequence of “phases,” where the jth phase
ends when the packet is within 2j steps of the target. Thus, there can be at most log2 n phases in
the routing. If the probability is 1/ log n that some x in the current phase has a long-range link to
a vertex in the next phase, then the expected total number of steps will be O(log2 n).

To begin, we set the probability distribution for the length of a long-range connection to follow a
power law form:

Pr(u→ v) =
d(u, v)−r∑
u6=v d(u, v)−r

, (1)

1This figure reprinted from J. Kleinberg, “The Small-World Phenomenon: An Algorithmic Perspective.” Proc.
32nd ACM Symposium on Theory of Computing (2000).
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Figure 1: (A) A two-dimensional grid network with n = 6, p = 1, and q = 0. (B) The
contacts of a node u with p = 1 and q = 2. v and w are the two long-range contacts.

• We then define an infinite family of random network models that naturally gener-
alizes the Watts-Strogatz model. We show that for one of these models, there is a
decentralized algorithm capable of finding short paths with high probability.

• Finally, we prove the stronger statement that there is in fact a unique model within
the family for which decentralized algorithms are effective.

The Model: Networks and Decentralized Algorithms. We now give precise defini-
tions for our network model and our notion of a decentralized algorithm; we then provide
formal statements of the main results.

In designing our network model, we seek a simple framework that encapsulates the
paradigm of Watts and Strogatz — rich in local connections, with a few long-range con-
nections. Rather than using a ring as the basic structure, however, we begin from a two-
dimensional grid and allow for edges to be directed. Thus, we begin with a set of nodes
(representing individuals in the social network) that are identified with the set of lattice
points in an n × n square, {(i, j) : i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , n}}, and we define the
lattice distance between two nodes (i, j) and (k, !) to be the number of “lattice steps” sep-
arating them: d((i, j), (k, !)) = |k − i| + |! − j|. For a universal constant p ≥ 1, the node u
has a directed edge to every other node within lattice distance p — these are its local con-
tacts. For universal constants q ≥ 0 and r ≥ 0, we also construct directed edges from u to q
other nodes (the long-range contacts) using independent random trials; the ith directed edge
from u has endpoint v with probability proportional to [d(u, v)]−r. (To obtain a probability
distribution, we divide this quantity by the appropriate normalizing constant

∑
v[d(u, v)]−r;

we will call this the inverse rth-power distribution.)
This model has a simple “geographic” interpretation: individuals live on a grid and know

their neighbors for some number of steps in all directions; they also have some number of
acquaintances distributed more broadly across the grid. Viewing p and q as fixed constants,
we obtain a one-parameter family of network models by tuning the value of the exponent
r. When r = 0, we have the uniform distribution over long-range contacts, the distribution
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Figure 1: The Kleinberg model, showing (A) the fixed local, bidirectional connections and (B) the
neighbors for a particular vertex u, which includes (directed) long-range connections.

where we define the distance measure d(u, v) to be the Manhattan distance on the lattice between
u and v, i.e., d(u, v) =

∑k
i=1 |ui− vi|, and r is the exponent (called α in previous lectures). For the

remainder of the analysis, we will assume a k = 2 dimensional lattice, and thus the optimal routing
occurs when r = k = 2.

This choice fixes Eq. (??) and allows us to simplify its denominator:

∑

u6=v

d(u, v)−2 ≤
2n−2∑

j=1

(4j)(j−2) , (2)

where the first term counts the number of vertices at a distance j in a k = 2 lattice, and the second
term is the probability that u links to a vertex at a distance j. Simplifying further yields

∑

u6=v

d(u, v)−2 = 4
2n−2∑

j=1

j−1

≤ 4 (1 + ln(2n− 2))

≤ 4 (ln 3 + ln 2n))

≤ 4 ln 6n .

This expression then allows us to rewrite Eq. (??) as

Pr(u→ v) ≥ d(u, v)−r

4 ln 6n
, (3)

which provides a normalized distribution.

3



Network Analysis and Modeling, CSCI 5352
Lecture 11

Prof. Aaron Clauset
2017

Now consider a packet traveling from some u to some v, which we divide into a set of “phases,”
where phase j is defined as the packet being at some vertex x such that 2j < d(x, v) ≤ 2j+1. Thus,
the 0th phase begins when d(x, v) ≤ 2, and the packet is at most two steps away from the target. In
general, a phase ends when the distance between the packet and the destination has been halved.
In this way, we are modeling the routing as a kind of binary search, and j ≤ log n.

B1

B2

Bj

vx

When does the jth phase end? From the above definition, the jth phase ends when d(x, v) < 2j .
Each time the packet is passed along a local connection, it gains a new chance to find a long-range
link that will end the phase, i.e., link to a vertex within a distance 2j of the target v. Each such
long-range link is independent of any other, and thus the probability that such an event happens
is the probability that x connects to some w ∈ Bj , where Bj is the set of vertices within distance
2j of the target v. The vertex x could connect to any of those vertices, of which there are

1 +

2j∑

i=1

i = 22j−1 + 2j + 1

=
1

2
22j +

1

2
2j + 1

> 22j−1 . (4)

Furthermore, each of these vertices is within a distance 2j+1+2j < 2j+2 of x. Thus, the probability
that x links to some w ∈ Bj is

Pr(x→ w) =
d(x,w)−2∑
d(x,w)−2

≥
[(

22j+4
)

(4 ln 6n)
]−1

.
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This therefore implies that the probability the phase comes to an end at vertex x is

Pr(jth phase ends at x) ≥
(
22j−1

) [
(22j+4)(4 ln 6n)

]−1

=
1

128 ln 6n
. (5)

How many steps are there in the jth phase? Let Xj count the number of such steps in the jth
phase. The expected value of Xj is thus

E[Xj ] =
∞∑

i=1

Pr(Xj ≥ i)

≤
∞∑

i=1

(
1− 1

128 ln 6n

)−1

= 128 ln 6n .

which is exactly equal to 1/Pr(jth phase ends at x).

Finally, the total number of steps to deliver the packet is the sum of the lengths of each of the
phases. Recall that because each phase halves the remaining distance to the target, there can be
at most log2 n phases. Thus, expected total time is

E[X] = E



log2 n∑

j=0

Xj




=

log2 n∑

j=0

E [Xj ]

≤ (1 + log2 n)(128 ln 6n)

≤ α2 log2 n = O(log2 n) .

Kleinberg’s analysis treated the more general case of unspecified r, and he showed that r = k is a
special value. If r < k, i.e., if the power-law link-length distribution is more heavy tailed than is
optimal, then routing slows down, because most of the links at x overshoot the target area Bj . In
the other direction, if r > k, i.e., if the power-law link-length distribution is less heavy tailed than
necessary, then routing also slows down, not because most of the links at x undershoot the target
area. Figure 2 shows the general pattern.
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Figure 2: The lower bound implied by Theorem 3. The x-axis is the value of r; the y-axis is
the resulting exponent on n.

The complete proof of this theorem is given in Section 3. The proof of (a) is analogous
to that of Theorem 1. The proof of (b), on the other hand, exposes a “dual” obstacle for
decentralized algorithms: with a large value of r, it takes a significant amount of time before
the message reaches a node with a long-range contact that is far away in lattice distance.
This effectively limits the “speed” at which the message can travel from s to t.

Although we have focused on the two-dimensional grid, our analysis can be applied more
broadly. We can generalize our results to k-dimensional lattice networks, for constant values
of k, as well as less structured graphs with analogous scaling properties. In the k-dimensional
case, a decentralized algorithm can construct paths of length polynomial in log n if and only
if r = k.

The results suggest a fundamental network property, distinct from diameter, that helps to
explain the success of small-world experiments. One could think of it as the “transmission
rate” of a class of networks: the minimum expected delivery time of any decentralized
algorithm operating in a random network drawn from this class. Thus we see that minimizing
the transmission rate of a network is not necessarily the same as minimizing its diameter.
This may seem counter-intuitive at first, but in fact it formalizes a notion raised initially —
in addition to having short paths, a network should contain latent structural cues that can
be used to guide a message towards a target. The dependence of long-range connections on
the geometry of the lattice is providing precisely such implicit information.

Indeed, the proofs of the theorems reveal a general structural property that implies the
optimality of the exponent r = 2 for the two-dimensional lattice: it is the unique exponent
at which a node’s long-range contacts are nearly uniformly distributed over all “distance
scales.” Specifically, given any node u, we can partition the remaining nodes of the lattice

7

Figure 2: Kleinberg’s general result on the routing time, as a function of the link-length distribution
exponent r, showing that only for r = k do we achieve optimal routing.

2.2 What about real networks?

Although Kleinberg’s result is for a toy model with highly unrealistic structure, its central assump-
tion, that the link-length distribution in social networks should follow a power-law distribution
with a particular structure in order to produce the efficient routing observed by Milgram, holds up
when we examine real social networks.

David Liben-Nowell and a number of colleagues tested this idea using data from a large and public
social network from the early 2000s called LiveJournal. In this social network, each node is a kind
of blog, which links to other blogs in the LiveJournal network. Crucially, many blogs list a zip code,
which gives us an estimate of the author’s physical location. For each pair of blogs connected by
an edge, if both listed a zip code, we may estimate the physical “length” of the link between them.
One difference between the LiveJournal network and the Kleinberg model is that each vertex in
this network can have many long-range links, which thereby increases the probability that some x
has a link that takes us closer to some destination.2

2This difference may be important. If the long-range out-degree distribution follows a certain pattern, we can still
achieve efficient routing even with a non-nice link-length distribution. I don’t think this has been worked out exactly,
but perhaps it should be. It does imply that even if the link-length distribution doesn’t follow exactly the pattern
Kleinberg showed is necessary, we may be able to compensate with the out-degree distribution.
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Taking this information, the empirical link-length distribution does indeed very roughly follow a
power-law distribution (Figure 3, left).3 However, the approximate exponent for this distribution
is closer to 1.2, which is significantly heavier-tailed than expected from Kleinberg’s result, which
predicts α ≈ k = 2.

The reason is that the physical locations of individuals are not arranged in a lattice or distributed
uniformly across the 2-dimensional surface of the Earth. Instead, they tend to clump together in
cites and other urban/suburban areas, and along the coasts of the US. This non-uniform distribu-
tion implies that a different number of individuals are within some distance δ from u, depending
on where on the map u is located.

Liben-Nowell et al. showed that this difference leads to efficient routing occurring at a slightly dif-
ferent value of the scaling exponent.4 In Kleinberg’s model, the number of individuals a distance δ
away grows linearly. In a non-uniform density situation, however, the number of individuals within
a distance δ can vary considerably. However, for every vertex, we may rank other individuals by
their distance to u. By redefining Pr(u → v) to be inversely proportional to the rank of v in u’s
list (raised to some power), Liben-Nowell et al. recover the same kind of model that Kleinberg
studied, but adapted to the non-uniform case. When population is uniform, this model reduces to
Kleinberg’s model exactly, while for a non-uniform population, the probability that u connects to
v depends on the number of people within some distance d(u, v).

The result is that efficient routing is the result of combining a rank-distance relationship (how far
away is the jth closest neighbor) and the link-length distribution. In the LiveJournal network, the
former is roughly linear and the latter is roughly inversely related, which gives us something close
to the value of 2 expected for routing in a social network embedded on a 2-dimensional surface.

3 At home

1. Reread Chapter 8.2 (pages 241–242)

2. Read Chapter 15.1 (pages 552–564) in Networks

3Both figures reprinted from D. Liben-Nowell et al., “Geographic routing in social networks.” PNAS 102(33),
11623–11628 (2005).

4With some differences: there is a connection here with fractals, and Liben-Nowell et al. estimate the fractal
dimension of the LiveJournal network to be close to 0.8, which means the underlying geography is non-linear, in
contrast to Kleinberg’s model.
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their destination city in just over four steps, which is comparable to
(or higher than) the end-to-end completion rates of earlier exper-
iments on real human subjects (1, 13). Because such a restrictive
global-routing scheme enjoys a high success rate, a question natu-
rally arises: is there some special structure relating friendship and
geography that might explain this finding?

In Fig. 3A, we examine the relationship between friendship and
geographic distance in the LiveJournal network. For each distance
!, let P(!) denote the proportion of pairs u,v separated by distance
d(u, v) ! ! who are friends. As ! increases, we observe that P(!)
decreases, indicating that geographic proximity indeed increases
the probability of friendship. [We note that this relationship holds
even in the virtual LiveJournal community; at first blush, geo-
graphic location might have very little to do with the identity of a
person’s online friends, but Fig. 3A verifies that geography remains
crucial in online friendship. Although it has been suggested that the
impact of distance is marginalized by communications technology
(26), a large body of research shows that proximity remains a critical
factor in effective collaboration and that the negative impacts of
distance on productivity are only partially mitigated by technology
(27).] However, for distances larger than "1,000 km, the !-versus-
P(!) curve approximately flattens to a constant probability of
friendship between people, regardless of the geographic distance
between them.

The shape of Fig. 3A can be explained by postulating a back-
ground probability " of friendship that is independent of geography,
so that the probability that two people who are separated by
distance ! are friends is modeled as for a function f(!) that varies
as the distance ! changes. That is, we model friendship creation by
the union of two distinct processes, one comprising all geography-
dependent mechanisms (like meeting in a shared workplace) and
one comprising all nongeographic processes (like meeting online
through a shared interest). A model for geographic friendships
should reflect a decrease in the probability f(!) of geographic
friendship as the distance ! increases. Such a model will still account

for some friendships between distant people, so we cannot simply
equate geographic friendships with ‘‘nearby’’ friendships. Fig. 3A
shows that P(!) flattens to P(!) " 5.0 # 10$6 for large distances !;
the background friendship probability " dominates f(!) for large
separations !. We thus estimate " as 5.0 # 10$6. We can use this
value to estimate the proportion of friendships in the LiveJournal
network that are formed by geographic and nongeographic pro-
cesses. The probability of a nongeographic friendship between u
and v is ", so on average u will have 495,836 ! " "2.5 nongeographic
friends. An average person in the LiveJournal network has eight
friends, so "5.5 of an average person’s eight friends (69% of her
friends) are formed by geographic processes. This statistic is
aggregated across the entire network: no particular friendship can
be tagged as geographic or nongeographic by this analysis; friend-
ship between distant people is simply more likely (but not guaran-
teed) to be generated by the nongeographic process. However, this
analysis does allow us to estimate that about two-thirds of Live-
Journal friendships are geographic in nature.

Because nongeographic friendships are by definition indepen-
dent of geography, we can remove them from our plot to see only
the geographic friendships. Fig. 3B shows the plot of geographic
distance ! versus the geographic-friendship probability f(!) !
P(!) $ ". The plot shows that f(!) decreases smoothly as ! increases.
Our computed value of " implies that just over two-thirds of the
friendships in the network are generated by geographic processes.
Of course, the average person’s 2.5 nongeographic friends may
represent the realization of other deep and complex mechanisms,
and they may themselves explain small-world phenomena and other
fundamental properties of social networks. Here, though, we use
only the average person’s 5.5 geographic links to give a sufficient
explanation of the navigable small-world phenomenon.

A natural starting point in modeling geographic friendships is the
recent work of Kleinberg (10–12) and Watts and coworkers (8, 22).
Watts et al. (8) present a model to explain searchability in social
networks based on assignments of individuals to locations in
multiple hierarchical dimensions; two individuals are socially sim-
ilar if they are nearby in any dimension. They give examples of
geography and occupation as dimensions, so their model may be
viewed as an enclosing framework for our geography-specific
results. However, the generality of their framework does not
specifically treat geographic aspects, and it leaves two open areas
that we address. First, although interests or occupations might be
naturally hierarchical, geography is far more naturally expressed in
2D Euclidean space, embedding geographic proximity into a tree
hierarchy is not possible without significant distortion (28). Second,
although they provide a detailed simulation-based evaluation in
terms of the number of hierarchical dimensions and a homophily
parameter, their work does not include a theoretical analysis of the
model as the network size grows, nor does it include a direct
empirical comparison to a real social network. Our work seeks to
build on their lead in these aspects.

Watts and Strogatz (22) give a compelling model of social
networks, simultaneously accounting for the presence of short
connecting chains and the high clustering coefficients of real social
networks, but the goal of their model was to explain the existence
of short paths rather than to give an explanation of social-network
navigability. A major step toward explaining navigability was taken
by Kleinberg (10–12). He modeled social networks by a k-
dimensional grid of people, where each person knows his imme-
diate geographic neighbors in every cardinal direction, and the
probability of a long-distance link from u to v is proportional to
1!d(u, v)#, for some constant # $ 0. Kleinberg showed that short
paths can be discovered in these networks if # ! k; more surpris-
ingly, he proved that this is the only value of # for which these
networks are navigable. (The shortest paths that can be discovered
in a network with # % k are exponentially longer than the
discoverable paths in networks with # ! k.) Kleinberg (12) has
subsequently generalized his model and results to an abstract

Fig. 3. The relationship between friendship probability and geographic
distance. (A) For each distance !, the proportion P(!) of friendships among all
pairs u, v of LiveJournal users with d(u, v) ! ! is shown. Distances are rounded
down to multiples of 10 km. The number of pairs u,v with d(u, v) ! ! is
estimated by computing the distance between 10,000 randomly chosen pairs
of people in the network. The curved line corresponding to P(!) & " ' 1!! in
A models the fact that some LiveJournal friendships are independent of
geography: for distances larger than "1,000 km, the background friendship
probability " begins to dominate geography-based friendships. (B) The same
data are plotted, correcting for the background friendship probability: we
plot distance ! versus P(!) $ 5.0 # 10$6.

Liben-Nowell et al. PNAS " August 16, 2005 " vol. 102 " no. 33 " 11625
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characterization of group structures in social networks, and a
number of researchers have presented extensions and improved
analyses of these models (29–34).

If the LiveJournal data confirm this relationship between friend-
ship probability and geographic distance, i.e., if the probability
f[d(u, v)] of geographic friendship between u and v is roughly
proportional to 1!d(u, v)2, as the Earth’s surface is 2D, then the
finding of short paths by GEOGREEDY will be explained. Fig. 3B
explores this conjecture, showing the best fit for geographic-
friendship probability as a function of geographic distance. How-
ever, the geographic-friendship probability between two people
separated by distance ! is best modeled as f(!) ! 1!!" for " " 1;
Kleinberg’s results (12), and those of all extensions to his model, in
fact show that this exponent cannot result in a navigable social
network based on a 2D mesh. Yet the LiveJournal network is clearly
navigable, as shown in our simulation of GEOGREEDY.

This seeming contradiction is explained by a large variance in
population density across the LiveJournal network, which is thus
ill-approximated by the uniform 2D mesh of Kleinberg’s model.
Fig. 4 explores population patterns in more detail. Fig. 4A shows
concentric circles representing bands of equal population around
Ithaca, NY. Under uniform population density, the width of each
band should shrink as the distance from Ithaca increases. In the
LiveJournal data set, however, the distance between annuli actually
gets larger instead of smaller. Furthermore, purely distance-based
predictions imply that the probability of a friendship at a given
distance should be constant for different people in the network. Fig.
4B explores this concern, showing a distinction in friendship
probability as a function of distance for residents of the East and
West coasts. Thus a geographic model of friendship must be based
on more than distance alone, as no accurate uniform description of
friendship as a function of distance applies throughout the network.

To summarize, we have shown that any model of friendship that
is based solely on the distance between people is insufficient to
explain the geographic nature of friendships in the LiveJournal
network. The model of Watts et al. (8) naturally captures individ-
uals’ geographic similarity by approximating their Euclidean dis-
tance by their distance in some hierarchy, assigning friendship
probability based on a function of this distance as long as geography
remains the most proximate coordinate. Thus current models do
not take into account the organization of people into cities of
arbitrary location and population, and they cannot explain the
success of the simulated message-passing experiment. We therefore
seek a network model that reconciles the linkage patterns in
real-world networks with the success of GEOGREEDY on these
networks. Such a model must be based on something beyond
distance alone.

Population Networks and Rank-Based Friendship
We explore the idea that a simple model of the probability of
friendship that combines distance and density may apply uniformly
over the network. Consider a person u and a person v who lives
500 m away from u. In rural Iowa, say, u and v are probably
next-door neighbors and very likely know each other; in Manhattan,
there may be 10,000 people who live closer to u than v does, and the
two are unlikely to have ever even met. This discrepancy suggests
why geographic distance alone is insufficient as the basis for a
geographical model. Instead, our model uses rank as the key
geographic notion: when examining a friend v of u, the relevant
quantity is the number of people who live closer to u than v does.
Formally, we define the rank of v with respect to u as

ranku#v$: # "%w : d#u, w$ $ d#u, v$&".

Under the rank-based friendship model, we model the proba-
bility that u and v are geographic friends by

Pr'u 3 v( "
1

ranku#v$
.

Under this model, the probability of a link from u to v depends only
on the number of people within distance d(u, v) of u and not on the
geographic distance itself; thus the nonuniformity of LiveJournal
population density fits naturally into this framework. Although
either distance- or rank-based models may be appropriate in some
contexts, we will show that (i) analytically, rank-based friendship
implies that GEOGREEDY will find short paths in any social network;
and (ii) empirically, the LiveJournal network exhibits rank-based
friendship.

We model a geographic n-person social network as follows.
Consider a 2D N as a model of the 2D surface of the Earth. The
grid divides the Earth’s surface into small squares; we may take N
to represent 1°-by-1° squares centered at the intersection of integral
lines of longitude and latitude, for example. At every point (x, y) !
N, we have a population p(x, y) denoting the number of people who
live in the square centered at (x, y), with )x,y p(x, y) ! n and p(x, y) *
0. The condition that p(x, y) * 0 is imposed to guarantee that a
routing algorithm can always make some progress toward any target
at every step of the chain. We refer to the combination of the grid
N and the population p as a population network. Building on the
navigable small-world model of Kleinberg (11, 10), we model
linkage in population networks as follows. Each person u in the
network has an arbitrarily chosen neighbor in each of the four
adjacent grid points: north, east, south, and west. In addition to
these four neighbors, person u has a long-range link to a fifth person
chosen according to rank-based friendship, that is, the probability
that u chooses v as her long-range link is inversely proportional to
ranku(v).

The notion of adding links with probability inversely proportional
to the number of closer candidates is implicit in Kleinberg’s work

Fig. 4. Evidence of the nonuniformity of the LiveJournal population. (A) A
dot is shown for every distinct United States location home to at least one
LiveJournal user. The population of each successive displayed circle (all cen-
tered on Ithaca, NY) increases by 50,000 people. Note that the gap between
the 350,000- and 400,000-person circles encompasses almost the entire West-
ern United States. (B) We show the relationship between friendship proba-
bility and geographic distance, as in Fig. 3, restricted to people living on the
West Coast (California, Oregon, and Washington) and the East Coast (from
Virginia to Maine), respectively.
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Figure 3: (left) The empirical link-length distribution for vertices in the LiveJournal blog network,
when both ends of an edge can be approximately geolocated. (right) The same, but now with a
correction for the non-uniform population density.

8


