1. (100 pts total) Consider Price’s model of a citation network, applied to publications in a single field.\footnote{You may have noticed that this problem set, as well as the last one, were much shorter than the first few. This is on purpose: you should now be spending a substantial portion of your time outside of class working on your class project!}

(a) (35 pts) Implement the simulation algorithm described in Chapter 14.1.1 of \textit{Networks}. Choose $c = 3$ and $n = 10^6$. Now, make a single figure showing the four complementary cumulative distribution functions $\Pr(K \geq k_{in})$ (the ccdf) for network in-degree k_{in}, one for each choice of $r = \{1, 2, 3, 4\}$. Briefly discuss the impact of the uniform attachment mechanism on the distribution’s shape and comment about the fraction of vertices with $k_{in} = 0$.

(b) (30 pts) Reasonable values of the model parameters for real citation networks are $c = 12$ and $r = 5$. For these choices, use your numerical simulation to calculate (i) the average number of citations to a paper (in-degree) in the first 10\% of published papers (vertices) and (ii) the average number for a paper in the last 10\%. Briefly discuss the implications of your results with respect to the “first-mover advantage,” and the corresponding bias in citation counts for the first papers published in a field.

Hint: For a good estimate, average your answer over many repetitions of the simulation.

(c) (15 pts) Visit the \textit{Index of Complex Networks} at icon.colorado.edu. Under the ICON entry for “arXiv citation networks (1993-2003),” obtain both the network and dates files for the hep-ph citation network. For (i) the first 10\% and (ii) the last 10\% of papers with submission dates, compute their average in-degree. Briefly discuss how well, and why, these empirical values agree or disagree with your model estimates from question (1b).

(d) (20 pts) Recall that Price’s model is a dramatically simplified view of how nodes in a citation network accumulate new connections. Describe at least three ways that the “preferential attachment” mechanism is unrealistic in this context, and for each, suggest a way that you could analyze a real citation network to demonstrate the difference between what the model predicts and what the real world shows.

(e) (20 pts extra credit) Now consider a variation of Price’s model in which we remove the preferential attachment part. That is, each time a new vertex joins the network, each of its c edges attaches to an existing vertex with equal probability. Using the same parameter choices as in question (1a), produce a figure showing the ccdfs for both this model and Price’s model, for $r = \{1, 4\}$. Briefly discuss the differences in terms of how citations (edges) are distributed across papers (vertices).