The Effect of Gossip on Social Networks

Allison Shaw
Ecology & Evolutionary Biology Department
Princeton University
Princeton, NJ, USA
akshaw@princeton.edu

Chang Yu
Harbin Institute of Technology
Harbin, Heilongjiang, China
chang@hit.edu.cn

Dave Brooks
MITRE Corporation
McLean, VA, USA
dgbrooks@mitre.org

Milena Tsvetkova
Department of Sociology
Utrecht University
Utrecht, Netherlands
milena@uu.nl

Roozbeh Daneshvar
Department of Electrical Engineering
Texas A&M University
College Station, TX, USA
roozbeh@tamu.edu

Abstract—In this project we look at the effects of gossip spread on social network structure. We define gossip as information passed between two individuals A and B about an individual C who is not present, which has the potential to affect the strengths of all three relationships A-B, B-C, and A-C. This work is novel in two respects: first, there is no theoretical work on how network structure changes when information passing through a network has the potential to affect edges not in the direct path, and second while past studies have looked at how network structure affects gossip spread, there is no work done on how gossip spread affects network structure.

Index Terms—Gossip, Social Networks, Network Dynamics

I. INTRODUCTION

Gossip is ubiquitous in human groups and has even been argued to be fundamental to human society [1]. Gossip usually has negative connotations; generally, no one wants to be thought of as a gossip, and gossiping has traditionally been viewed as an indirect form of aggressiveness. However, gossip also seems to have a variety of benefits, including helping individuals learn the cultural rules of their group [2], [1] even proposed that gossip is analogous to grooming in primates: it is essentially a tool to create and maintain relationships between individuals, with little importance given to the accuracy or quality of the actual information being passed.

Unlike rumors, which pertain to issues and events of public concern, gossip targets the behavior and life of a private individual. Gossip can essentially be defined as information passed from one individual (originator) to another (gossiper) about an absent third individual (victim) [3]. Therefore, any analysis of gossip must occur at the level of the triad or higher [4].

Closely related to the vast body of literature studying the spread of cultural fads, technological innovations or contagious disease (e.g. [5]), previous work has explored how social structure influences the flow of gossip and which network types best promote gossip [3]. Gossiping, however, could damage some relationships and strengthen others [4]. This suggests a flip side to the problem of the spread of gossip that has remained unaddressed. Hence, in this paper, we investigate how gossip affects the structure of the social network it flows through.

The process of an information flow molding a network has been previously studied in the context of Hebbian learning, where the simultaneous activation of neurons leads to an increase in the strength of their synaptic connection [6]. A similar type of path reinforcement has also been observed in sentence on ant trails by Allison?

Both of the above models, however, concern modification of the network only along the flow’s direct path. Our contribution is to reveal how information passed along one edge can affect the strengths of other edges in the network.

II. METHODS

We conducted simulations on a simple network model (built in NetLogo) to understand how the spread of gossip influences social network structure. Each simulation was run for 10,000 gossip events.

add a note about convergence

We ran simulations with 48 different parameter combinations (3 network types, 2 network sizes, 2 methods of victim choice, 2 methods of originator choice, 2 methods of changing connection strength) for 10 repetitions each, for a total of 480 simulation runs.
A. Model

To simulate a single gossip event on a network we first choose a victim of gossip as a random node in the network. We choose one of the victim’s neighbors as the originator of the gossip (Fig. 2a). In the first wave of a gossip event, the gossip is spread to all the mutual neighbors, now gossipers, of the victim and originator (Fig. 2b). Each of these new gossipers then spreads the gossip to their mutual friends with the victim, in subsequent waves (Fig. 2c). This process continues until no new individuals become gossipers.

We assume that spreading gossip results in a stronger relationship between all gossipers, and a weakened relationship between the victim and all gossipers. Allowing link weights to take values between 0 and 1, we used two functions describing this effect:

- **normalized**: For increasing, \(w_{n+1} \leftarrow w_n + \alpha (1 - w_n) \) and for decreasing, \(w_{n+1} \leftarrow \beta w_n \) in which \(\alpha < 1 \) and \(\beta < 1 \). This method has hysteresis, i.e., an increase followed by a decrease does not necessarily lead to the initial value of strength.
- **quadratic**: For increasing, \(w_{n+1} \leftarrow \sqrt{w_n} \) and for decreasing, \(w_{n+1} \leftarrow w_n^2 \). Other powers can be used for extensions.

All edges were initially set to have a strength of 0.5. Furthermore, those links whose weight dropped below 0.005 were severed.

Algorithm 1 Basic Model

1: for each gossip event do
2: set all individuals as non-gossipers
3: choose victim: pick a random individual
4: choose originator: pick a random neighbor of victim
5: set originator as a gossiper
6: while \(\exists \) mutual neighbors of the victim and a gossiper in which \(\exists \) are non-gossipers do
7: set all mutual neighbors of the victim and each gossiper as gossipers
8: end while
9: decrease the links between the victim and each gossiper
10: increase the links between all pairs of gossipers
11: end for

To test if any results we saw were due to just strengthening and weakening connections between triads of nodes, we also ran simulations on a null-gossip network, where a single gossip event only occurred within a single triad of individuals. In other words, gossip was only allowed to spread from the originator to one other individual.

B. Networks

We conducted simulations on several network types to see if the effect of gossip varied with network structure. We used random, small-world, and spatially-clustered networks. We did not consider scale-free networks since these inherently have a branching form with no triads (ref), making them incompatible with our model of gossip.

Algorithm 2 Null Model

1: for each gossip event do
2: set all individuals as non-gossipers
3: choose victim: pick a random individual
4: choose originator: pick a random neighbor of victim
5: set originator as a gossiper
6: choose one random mutual neighbor of the victim and gossiper, and set as gossiper
7: decrease the links between the victim and each gossiper
8: increase the links between the pair of gossipers
9: end for

Algorithm 3 Victim-Choice = Degree-Random

1: for each gossip event do
2: set all individuals as non-gossipers
3: choose victim: pick a random individual
4: choose originator: pick a random neighbor of victim
5: choose originator: pick a random neighbor of victim
6: choose originator: pick a random neighbor of victim
7: set originator as a gossiper
8: choose one random mutual neighbor of the victim and a gossiper in which \(\exists \) are non-gossipers do
9: set all mutual neighbors of the victim and each gossiper as gossipers
10: end while
11: decrease the links between the victim and each gossiper
12: increase the links between all pairs of gossipers
13: end for

In the heterogeneity model, we add conformity behavior to nodes. Conformity behavior happens to everyone when a person pursues the fundamental sense of belongingness or social approval from groups. A person tends to follow the majority behavior in a group because he is eager to be admitted and accepted. Even it means to go against his original perceptions. Study shows that individuals with a high need for social approval will distort their judgments of objectively determinable stimuli in response to perceived group pressure more frequently (Strickland, Bonnie R.; Crowne, Douglas).
Fig. 2. Schematic for how gossip spreads in a social network. a) We randomly chose a node to be the victim (V) and one of its neighbors to be the originator of the gossip (O). b) the originator spreads the gossip to all mutual friends with the victim, strengthening connections between all gossipers and weakening all connections between the victim and gossipers. c) This process continues until no more individuals can become gossipers.

\begin{algorithm}
\textbf{Algorithm 4 Originator-Choice = Weakest-Link}
\begin{algorithmic}
 \State \textbf{for} each gossip event \textbf{do}
 \State \hspace{0.5em} set all individuals as non-gossipers
 \State \hspace{0.5em} choose victim: pick a random individual, chosen completely randomly
 \State \hspace{0.5em} choose originator: pick neighbor of victim with the weakest connection to victim
 \State \hspace{0.5em} set originator as a gossiper
 \State \hspace{0.5em} while \exists \text{ mutual neighbors of the victim and a gossiper} \ni \text{ are non-gossipers} \textbf{do}
 \State \hspace{1em} set all mutual neighbors of the victim and each gossiper as gossipers
 \State \hspace{0.5em} end while
 \State \hspace{0.5em} decrease the links between the victim and each gossiper
 \State \hspace{0.5em} increase the links between all pairs of gossipers
 \State \textbf{end for}
\end{algorithmic}
\end{algorithm}

P.1962). In this model, the probability of a node to become an originator depends on the Tendancy to Originate Gossip (which is a slider in the interface).

Also we consider how peer pressure from gossiping group pushes a node to be a gossiper. According to Solomon Asch, that social influences shape every person’s practices, judgments and beliefs is a truism to which anyone will readily assent(Solomon Asch.1955). It means a node will join in the gossiping group to be a gossiper under the group pressure although he initially doesn’t want to be.

D. Statistics

Looked at average node degree, average path length, clustering coefficient, degree distributions.

\begin{center}
\textbf{we didn’t really use all these in the end – which stats were the most helpful?}
\end{center}

III. Analysis

A. Triads

For the simplest case, we assume that we have only three connected nodes. Without loss of generality, we assume that A gossips to B about C (see Fig.3).

In this case, c is replaced with c^2, a is replaced with a^2 and b is replaced with b^2. After n steps of the same action, the new values are

\begin{align}
 a^{2n}, b^{2n}, c^{2n} \tag{1}
\end{align}

if the victim is chosen at random for each step, after n steps the new values are (assuming that n is large enough)

\begin{align}
 a^{2(\frac{2}{3})n} \times \frac{1}{2} = a^{\frac{2n}{3}}, b^{\frac{2n}{3}}, c^{\frac{2n}{3}} \tag{2}
\end{align}

which means that when the victims are chosen at random, with further steps, the strengths of the connections weaken (until all of them tend to zero).

We can also consider a case in which the probability of choosing a victim is related to the tendancies of the links in triads. For instance, when originators have more tendency to strengthen their strong connections, they might gossip with a close friend about a common friend. For this case, we can write the probabilities $P(N)$ of gossips about node N as below

\begin{align*}
 P(A) &= \frac{a}{a + b + c} \\
 P(B) &= \frac{b}{a + b + c} \\
 P(C) &= \frac{c}{a + b + c}
\end{align*}

We have basins of attraction in this state space. It means that when one link is stronger than the others, it has higher chance to become stronger during iterations. This has a positive feedback effect that leads to a very strong connection and two connections that are very weak. There is still a probability that a connection that is not the strongest, become strongest over time. This change is more probable when the strengths are close to each other. Without loss of generality, we assume
that \(a_0 > b_0 > c_0 \) in a triad. In this case, the probability that connection between nodes \(A \) and \(C \) becomes stronger in one iteration is

\[
\frac{b_0}{a_0 + b_0 + c_0}
\]

This makes the new values of connections as follows

\[
\begin{align*}
 a_1 &= a_0^2 \\
 b_1 &= b_0^{\frac{1}{2}} \\
 c_1 &= c_0^2
\end{align*}
\]

Hence, for the next step, the probability of strengthening connection \(AC \) is

\[
\frac{b_1}{a_1 + b_1 + c_1} = \frac{b_0^{\frac{1}{2}}}{a_0^2 + b_0^{\frac{1}{2}} + c_0^2}
\] (3)

and so the probability of choosing connection \(AC \) for \(n \) consecutive steps is

\[
\prod_{i=0}^{n-1} \frac{b_i}{a_i + b_i + c_i} = \prod_{i=0}^{n-1} \frac{b_0^{\frac{1}{2i}}}{a_0^2 + b_0^{\frac{1}{2i}} + c_0^2}
\] (4)

If \(P_{0k} > P_{ik} \), then

\[
\sum_{i=1}^{n} A_{0ik} > A_{0ik} + A_{i-1ik} + A_{ii+1k}
\]

When this condition holds, node \(A_0 \) has a higher chance of being selected as the victim. For each time that node \(A_0 \) is selected, links \(L_{0ik} \) to \(L_{0nk} \) weaken (with the mentioned configuration) and other connections strengthen. This means that

\[
\sum_{i=1}^{n} (A_{0ik+1} - A_{0ik+1} - A_{i-1ik+1} - A_{ii+1k+1})
\]

\[
< \sum_{i=1}^{n} (A_{0ik} - A_{0ik} - A_{i-1ik} - A_{ii+1k})
\]

which shows that the difference has decreased and the total weights of \(A_0 \) is becoming closer to total link weights of \(A_i \). It seems that for the mentioned configuration, gossip has a modifying effect (reducing the link strengths of the central node and increasing the strengths of links on the circle).

B. Star-Like Clusters

In a Star-Like formation, a node is in the middle and the surrounding nodes form a circle around it (Fig. 4). We have assumed that the boundary nodes are also connected to their neighbors\(^1\). In this case, the total links is \(n + n = 2n \) and hence the number of total ends is \(4n \). When probability of choosing a node as the victim is proportional to the number of node friends, the probability of choosing node \(i \) as the victim \((P_i) \) is

\[
P_i = \begin{cases}
\frac{n}{4n} = \frac{1}{4}, & i = 0 \\
\frac{3}{4n}, & i \neq 0
\end{cases}
\] (5)

for \(n > 3 \), the probability of choosing \(A_0 \) is higher than each of the other nodes (these are the non-trivial cases that we study).

When the gossip spreads in this case, if \(A_i \) is the originator and \(A_0 \) is the victim, \(A_{i+1} \) becomes another gossiper and hence there is a gossip wave to \(A_{i+2}, A_{i+3}, ..., A_n, A_1, A_2, ..., A_{i-1} \). Hence, in this case, for each \(i \) (except 0) \(L_{0ik} \) decreases (\(L_{ijk} \) is the strength of the connection between nodes \(i \) and \(j \) at time \(k \)).

If choosing the victim is based on the strengths of the links, then

\[
TotalWeights = \sum_{i=1}^{n} A_{0ik} + \sum_{i=1}^{n-1} A_{ii+1k} + A_{n1k}
\] (6)

so, the probability of choosing node \(i \) as the victim \((P_i) \) is

\[
P_i = \begin{cases}
\frac{n}{4n} = \frac{1}{4}, & i = 0 \\
\frac{n}{4n} - \frac{\sum_{i=1}^{n-1} A_{0ik} + \sum_{i=1}^{n-1} A_{ii+1k} + A_{n1k}}{\sum_{i=1}^{n} A_{0ik} + \sum_{i=1}^{n-1} A_{ii+1k} + A_{n1k}}, & i \neq 0
\end{cases}
\] (7)

C. Complete Clusters

In a complete cluster we have \(n \) nodes \(A_1 - A_n \) and there is a link between each pair of the nodes. The total link weights of node \(A_i \) is \(\sum_{j=1}^{n} L_{ijk} \) (assuming that \(A_{ijk} = 0 \)). If

\[
\sum_{j=1}^{n} L_{ijk} > \sum_{j=1}^{n} L_{ijk}
\]
then node A_i has more probability than node A_l to become victim. So, considering the expected values regarding the probabilities, total link weights of A_i after change is 2

$$\sum_{j=1}^{n} L_{ijk} + 1 = P_i \times \text{NewValues} + (1 - P_i) \times \text{OldValues}$$

Because of the dissipating effects of gossip on the victim, $\text{NewValues} < \text{OldValues}$. When P_i is small, $\sum_{j=1}^{n} L_{ijk} + 1$ is close to $\sum_{j=1}^{n} L_{ijk}$ (as the second term, $(1 - P_i \times \text{OldValues}$, is dominant). But when P_i is a big enough number, NewValues after being gossiped plays more role and decreases $\sum_{j=1}^{n} L_{ijk} + 1$ compared to $\sum_{j=1}^{n} L_{ijk}$. This means that the proposed model of gossip moderates the network and brings the total weights of the nodes closer to each other.

IV. RESULTS

In our model, although gossip both weakens and strengthens links, weak links break but no new links are created. Hence, a priori, we expect that gossip will decrease the networks clustering and average node degree.

The negative effect of gossip on clustering is most extreme in the null model: when gossip does not spread but occurs randomly in triads, the simulations quickly converge to networks with zero clustering, regardless of the properties of the initial network, the link-change function or the rules for selecting a gossip victim and a gossip originator. Furthermore, triads are unstable also when gossip spreads in networks with small initial clustering. For example, the average clustering coefficient after convergence in all 160 runs with random networks is effectively zero (mean = 0.0048, std. dev. = 0.0076). These results confirm the analytical prediction that gossip breaks triads.

Nevertheless, in networks with sufficient initial clustering, the spread of gossip can have exactly the opposite effect it can make certain triads more stable. When gossip originates in and spreads throughout a dense cluster, it strengthens more ties than those that it weakens. For example, in a complete network of five agents, gossip weakens only four relations (between the victim and each of the gossipers), while it strengthens six (among all gossipers). Hence, although over the long run gossip destroys weakly triangulated links (i.e. bridges), it makes the links in dense clusters maximally strong. The result is a more fragmented and cliquish network (Figure 4).

When we account for initial clustering, the effect of gossip does not appear to differ among network types (Table 1). We only find that gossip tends to destroy links and weaken clustering to a lesser degree in large networks. Furthermore, when the gossip originator is the victims weakest link, average degree and clustering are lower compared to the case when the originator is randomly chosen from the victims links. This is so because, as elaborated in the analysis, under this rule weaker links become more likely to be severed.

2This is disregarding the increase in value when A_i is selected by another originator to gossip.
TABLE I
LINEAR REGRESSIONS OF FINAL NETWORK PROPERTIES ON SIMULATION PARAMETERS WITH STANDARD ERRORS ADAPTED FOR CLUSTERING WITHIN INITIAL CONDITION

<table>
<thead>
<tr>
<th>Variable</th>
<th>Clustering</th>
<th>Average Node Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large network</td>
<td>0.0631**</td>
<td>0.0167</td>
</tr>
<tr>
<td>Quadratic effect</td>
<td>-0.0699**</td>
<td>0.0147</td>
</tr>
<tr>
<td>Spatially-clustered network</td>
<td>0.0628</td>
<td>0.0812</td>
</tr>
<tr>
<td>Small-world network</td>
<td>-0.0698</td>
<td>0.0499</td>
</tr>
<tr>
<td>Victim: degree-central</td>
<td>0.0081</td>
<td>0.0147</td>
</tr>
<tr>
<td>Originator: weakest-link</td>
<td>-0.0763**</td>
<td>0.0147</td>
</tr>
<tr>
<td>Initial clustering</td>
<td>0.8340**</td>
<td>0.1539</td>
</tr>
<tr>
<td>Constant</td>
<td>0.9183</td>
<td>0.7456</td>
</tr>
</tbody>
</table>

R-squared = 0.9183 .7456

* p < 0.05, ** p < 0.001
Number of observations = 480, Number of clusters = 48

V. DISCUSSION AND FUTURE DIRECTIONS

In this paper, we studied a general model of the effect of gossip on social structure. We concentrated on negative gossip, which we defined as an exchange of information that strengthens the relationships between those who gossip but weakens the tie between any gossiper and the gossip victim. We found that while gossip tends to dissolve isolated friendship triads, it strengthens them when they are embedded in dense clusters. Hence, gossip destroys clustering in weakly clustered networks and increases cliquishness in networks with already high clustering.

Many of the assumptions we made in our model are overly simplistic. Nevertheless, the model could be easily extended to be more realistic. For example, gossip does not always have to be negative. Gossip could be positive and conductive to forming new relationships (FIGURE 3). Furthermore, if O shares with G positive gossip about V, G may decide to divert time from her relationship with O and start hanging out with V. This time conservation principle implies a reverse mechanism where gossip weakens the relationship between the gossipers and strengthens the relationship between each gossiper and the gossip target. Alternatively, this very effect could also occur when somebody who has lost credibility starts maligning a third actor, i.e. when negative gossip goes wrong.

The effect of gossip could differ not only in direction but also in strength. It is reasonable to assume that the credibility of gossip decreases as you move away from its source. Consequently, a more realistic model would have the effect of gossip on the relationship between the gossipers decreasing with each step away from the originator.

Future developments of the model should also incorporate more heterogeneity among the agents. Some individuals are more likely to originate gossip or to pass it along. People tend to exhibit conformist behavior because they pursue the fundamental sense of belonging to a group, as well as social approval from its members. Thus, being the one person in a network who doesn’t gossip might lead to social isolation (McAndrew 2008). However, individuals succumb to peer pressure to different degree. Introducing individual variation in the tendency to originate or repeat gossip to the simulation model would lead to more realistic predictions about the effect of gossip on social structure.

- In the heterogeneity model, we add conformity behavior
to nodes. Conformity behavior happens to everyone when a person pursues the fundamental sense of belongingness or social approval from groups. A person tends to follow the majority behavior in a group because he is eager to be admitted and accepted. Even it means to go against his original perceptions. Study shows that individuals with a high need for social approval will distort their judgments of objectively determinable stimuli in response to perceived group pressure more frequently (Strickland, Bonnie R.; Crowne, Douglas P. 1962). In this model, the probability of a node to become an originator depends on the Tendancy to Originate Gossip which is a slider in the interface.

- Also we consider how peer pressure from gossiping group pushes a node to be a gossiper. According to Solomon Asch, that social influences shape every person’s practices, judgments and beliefs is a truisim to which anyone will readily assent (Solomon Asch. 1955). It means a node will join in the gossiping group to be a gossiper under the group pressure although he initially does not want to be.

VI. ACKNOWLEDGMENTS

We would like to appreciate Santa Fe Institute for giving the opportunity to work on this project. We would also like to appreciate Dr. Tom Carter for all his helpful comments.

REFERENCES