Earth, Environment and Energy

Carlo Rubbia
CEPAL, Special Advisor
CERN, Geneva, Switzerland
CIEMAT, Madrid, Spain
Summary

1. Population explosion and the demographic transition.
2. The long range consequences of growing CO2 emissions.
3. Geo-engineering: reconciling fossils and climate?
4. Clean Coal Sequestration (CCS): a reality or an illusion?
5. (Fast) conversion of CO2 into carbonates?
6. A “new economy” as a substitute to Oil? Novel options:
 I. Fossil hydrogen from NG with no CO2 emissions
 II. Hydrogen production from concentrated solar energy.
7. Hydrogen conversion to liquid fuels with the addition of previously sequestrated CO2
8. A “dream”: recovering CO2 from the atmosphere.
Energy and future

- At the present consumption level, known reserves for coal, oil, gas and nuclear correspond to a duration of the order of 230, 45, 63 and 54 years.

- The longevity of the survival of the necessarily limited fossil’s era will be affected on the one hand by the discovery of new, exploitable resources, and on the other by the inevitable growth of the world’s population and their standard of living.

- Taking into account the long lead time for the massive development of some new energy sources, the end of the fossil era may be at sight.
Effects of human activities on the planet

- Population
- Emissions
- Concentrations
- Climatic change
 - all correlated

The exploitation of the necessarily limited fossil era may be greatly shortened by the effects of global warming.
Upsala Glacier, Patagonia
1928

2004
The population “explosion” and the Demographic Transition
Every second, 21 people are born and 18 die, a net gain of 3 people/s. Every day the population increases by 0.22 million people. The growth rate has been incessantly rising and it is currently approaching 90 million/year, with the rapid blowup of a population explosion.

Such an immense growth of the human species is one of the most extraordinary evolutions of the planet Earth and no doubt it is conditioning the future of man as well as the one of any other animal and vegetal species.

Within the 4300 millions of years of the life of the solar system, the “homo sapiens”, its speech, language and fire all go back to far less than one million years from today.

The total number of individuals which have ever lived on earth is estimated between 70 and 150 billions. Because of the exponential growth, as many as 6 to 10 % of all human beings which have populated the earth are alive today.
● Such an expanding population demands more and more food and energy, requires a greater consumption of mineral resources and exerts increasing pressure on the environment.

● This phenomenon occurs in every population and it is characterized by
 ➡ A progressive reduction of the death’s rate, followed by
 ➡ a rapid decrease of the growth, followed by stabilization.

● This transition has occurred in all developed countries and it is currently happening on a global scale. It is accompanied by a general increase in economic growth and urbanization. The population begins to age — the elderly outnumber the young.

● Discovered in France on 18th century, the transition in the case of the modern interconnected world will presumably end within the 21st century.
An “explosive” population growth: 90 M/year

Everybody will agree on the fact that future progress of mankind will be impossible without a very substantial amount of available energy, namely “New Energies are necessary to preserve long range future of Mankind”
At the beginning of the 19th century (population: 10^9) the average power was about 1kW/p, about 1/2 of a HP, 10 x his own human power.

Since 1850, energy has grown twice as fast as population, i.e. $E \propto N^2$.

During the last 79 years, the global population grew by 3.42 times and the energy production increased 11.7 times.

In 2000 mankind consumed 14.5 Twatt x year, a pro capite equivalent to 2.3 ton of coal, of the same order of the pro-capita nuclear weapons or of the energy required to launch each human being into space. For the US ≈ 14 t/y/p.
A huge correlation between lack of energy and poverty

1.6 billion people - a quarter of the current world's population - are without electricity,

About **2.4 billion** people rely almost exclusively on traditional biomass as their principal energy source.

Of the 6 billion people, about one half live in poverty and at least one fifth are severely undernourished. The rest live in comparative comfort and health.

Technologically advanced countries have the responsibility of showing the way to the most needy ones!
The long range consequences of the growing CO2 emissions
Where is CO2 going?

-1.3 GtC +1.1 GtC -2.0 GtC

Antropogenic effects

1 ppmv CO₂ = 2.1 GtC

Ultimately most of the CO2 excess will have to be carbonized in the deep oceans

2.0 GtC into Carbonates
CO2 concentration (in parts per million ppmv) of the air at the summit of Mauna Loa, Hawaii, from 1958 to 2000.
How long will CO2 last in the biosphere?

- For the “best guess” case:
 - After 1’000 years 17-33% of fossil C
 - At 10’000 years 10-15% of fossil C
 - At 100’000 years 7% of fossil carbon
- The mean lifetime of fossil CO2 is about 30-35 kyr
- Lifetime for public discussion might be “300 years, plus 25% that lasts forever.”
- As a comparison, the lifetime of Pu-239 is 26 kyr, associated with the today’s public perception of nuclear energy.

Therefore...

- A mean atmospheric lifetime of order 10^4 years is in stark contrast with the “popular” perception of several hundred year lifetime for atmospheric CO2.

- The 300 year simplification misses the immense longevity of the tail on the CO2 lifetime, and hence its interaction with major ice sheets, ocean methane clathrate deposits, and future glacial/interglacial cycles.

● Oil and Natural gas (about 500 Gton each) are expected to reach their limits sooner rather than later, due both to an increase of consumption and the progressive reduction of easily available resources.

● However there is plenty of cheap and readily available Coal. The known reserve is about 5000 Gton and it could be up to 20’000 Gton.

● Coal or Shales can be eventually converted to liquids (methanol or ethanol) to replace Oil and to gas (Syngas, Towngas and so on) to replace NG. But they require about twice as much CO2 than Oil or gas.

● We recall as an example Germany during the last world war, with a massive use of gasoline from Coal in order to replace the wartime shortage of Oil.

● There are sufficient amounts of Coal for half a millenium at twice the present level of (fossil) energy consumption.
Some of the world’s biggest economies rely on coal. For instance, it provides almost 50% of USA’s and Germany’s electric power, 70% of India’s and 80% of China’s, a livelihood for billions of people, with a secure, domestic energy. But it produces twice the CO2 of NG.

Is there a way of reconciling fossils and climate? Politicians’ hopes are very high. The job is huge since already today about 20 billion tons of CO2 are produced every year.

At the present rate CO2 is enough to fill with super-fluid CO2 at >100 atm. the lake of Geneva (80 km³) every 4 years.
Assume that a major fraction of fossils are burnt….

- Technological improvements will, no doubt, will introduce other forms of energy: but the planet will continue notwithstanding to burn coal for a long time to come, especially in those parts of the planet where the technological change is the slowest.

- Several millennia after today, the CO2 concentration remains large and widely independent of the details of the process.
Geo-engineering:
reconciling fossils and climate
Geo-engineering for fossil CO2 recovery?

1. Aereosols in the stratosphere
2. Reflectors in orbit
3. Ozone preservation with chemicals
4. Cloud seeding
5. Iron fertilisation of sea
6. Grow trees
7. Genetically modified crops
8. Greening deserts
9. Pump liquid CO$_2$ into rocks
10. Pump liquid CO$_2$ to deep seas

- Many of these ideas are unrealistic at the first sight, like for instance the proposal for huge reflectors in space (2).
- Notwithstanding they evidence the extreme difficulty in facing the consequences of growing fossil emissions.
- These considerations should foster a serious debate on maybe other, truly innovative ideas on the planetary scale.
Clean Coal Sequestration (CCS): a reality or an illusion?
Clean coal: a reality or an illusion?

- Sequestration (CCS) is seriously considered: inject the CO2 down into the earth or at the bottom of the ocean.
- Already used by the oil industry, but at the level of few million tons/y.
- Some $3.4 Billion have been already spent by USA and similar incentives have been given by EECC and elsewhere.
- Many sources of CO2 are not applicable to CCS.
- Sequestration is not elimination and eventually CO$_2$ will have to come back in the atmosphere, after dissipation of the greenhouse effect: thousand of years of accumulation!
Storage sites for carbon dioxide [Herzog 2000]

Underground CO$_2$ sequestration: methods
Underground sequestration of CO₂?

- As ambient temperature, the CO₂ becomes liquid (d ≈ 1.1 kg/l) for pressures larger than 110 atm. It can therefore be injected at great depth (> 1km) under land or under sea.

- In order to be effective, the quantities of CO₂ are enormous: in order to ensure by 2100 a level equal to twice the pre-industrial level (550 ppmv) we must accumulate ≈ 2000 km³ of super-fluid CO₂. Each km³ contains 1.1 x 10⁹ tons.

Added costs for electricity production. How to pay for them?
In addition to technological developments and added costs, the use of sequestration represents very serious potential environmental risks.

Although not toxic, at concentrations above some %, CO$_2$ act as powerful brain vein dilatators. In a few minutes, unconsciousness occurs at 15 % of relative concentration and immediate death at 30%. In some cases death was observed already at 9%.

In 1986, at lake Nyos a volcanic CO$_2$ leak of 2.4x105 t has killed all 1746 people < 15 km from the source and < 24 hours after the event. Insects, animals, people in the invisible cloud dropped almost instantaneously unconscious, comatose or dead.
Safety considerations

- The degradation processes for the sealed well and the reservoir behaviour over long timescales are very difficult to predict.
- On general grounds one may consider that the likelihood of leaks from a CO$_2$ reservoir during the sequestration process should be similar to that of hydrocarbon reservoirs during production, with significant leaks (> 10 t/day) expected to be about 10^{-3} per reservoir year.
- After the reservoir is sealed, after many centuries, the uncertainty about leak frequency is probably higher. Unlike abandoned hydrocarbon reservoirs, the CO$_2$ reservoir will be under pressure.
- The expanded and denser CO2, if promptly emitted, will be very cold and hence remain at the surface of the escaping area; it may represent a major risk for the nearby population.
The injection of many hundreds of GtCO$_2$ will produce large changes in the region of injection and measurable changes over the whole ocean volume:

- 10% mitigation for 550 ppmv produces PH changes >0.4 over >1% ocean volume
- Adding CO$_2$ harms marine organisms: reduced calcification, reproduction, growth, circulatory oxygen supply and increased mortality
- Immediate mortality is expected close to injection points or CO$_2$ lakes

<table>
<thead>
<tr>
<th>Year</th>
<th>800 m</th>
<th>1500 m</th>
<th>3000 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>2100</td>
<td>0.78 ± 0.06</td>
<td>0.91 ± 0.05</td>
<td>0.99 ± 0.01</td>
</tr>
<tr>
<td>2200</td>
<td>0.50 ± 0.06</td>
<td>0.74 ± 0.07</td>
<td>0.94 ± 0.06</td>
</tr>
<tr>
<td>2300</td>
<td>0.36 ± 0.06</td>
<td>0.60 ± 0.08</td>
<td>0.87 ± 0.10</td>
</tr>
<tr>
<td>2400</td>
<td>0.28 ± 0.07</td>
<td>0.49 ± 0.09</td>
<td>0.79 ± 0.12</td>
</tr>
<tr>
<td>2500</td>
<td>0.23 ± 0.07</td>
<td>0.42 ± 0.09</td>
<td>0.71 ± 0.14</td>
</tr>
</tbody>
</table>

Fraction of CO$_2$ surviving as function of depth and time.
Sequestration is in the long run far less effective

- Integrated effects of sequestration, even if performed most efficiently, are only postponing the emission pattern.
- Removal, with the help of novel technologies, is far more efficient.
(Fast) conversion of CO2 into carbonates?
Mineral carbonation

- Mineral sequestration involves the reaction of CO2 with minerals to form geologically stable carbonates, i.e. mineral carbonation, with the potential to convert naturally occurring silicate minerals to geologically stable carbonate minerals and silica.

- This process emulates natural chemical transformations such as weathering of rocks to form carbonates. Some examples are:
 - The common silicate mineral serpentine, Mg$_3$Si$_2$O$_5$(OH)$_4$, and CO2 into magnesite, MgCO$_3$, silica and water. Using this ideal case, one ton of serpentine can dispose of approximately one-half ton of CO2.

 \[
 \frac{1}{3} \text{Mg}_3\text{Si}_2\text{O}_5(\text{OH})_4 + \text{CO}_2 \rightarrow \text{MgCO}_3 + \frac{2}{3} \text{SiO}_2 + \frac{2}{3} \text{H}_2\text{O} + 64 \text{kJ/mole}.
 \]

 - The forsterite, which is the end member of the common silicate mineral olivine. One ton of olivine can dispose of about 2/3 of a ton of CO2. The reaction is exothermic and releases 90 KJ/mole of CO2.

 \[
 \frac{1}{2} \text{Mg}_2\text{SiO}_4 + \text{CO}_2 \rightarrow \text{MgCO}_3 + \frac{1}{2} \text{SiO}_2 + 90 \text{kJ/mole}
 \]

- The minerals must be initially finely crushed to a dust of micron size. The long reaction time and demanding reaction conditions contribute to process expense. The amounts of minerals are very relevant, far heavier than the initial coal supply (almost an order of magnitude).
We need new and demanding reaction conditions, namely

- faster reaction pathways
- the process has to be economically viable.
- it is generally very difficult to recover the low-grade heat.
- the environmental impact from mining + carbonation must be considered.
In situ, “sponge like” carbonation by rocks?

- Kelemen and Matter have observed that in Oman natural carbonation of peridotite (olivine \((\text{Mg,Fe})_2\text{SiO}_4\) and pyroxene \((\text{Ca,Mg,Fe})_2\text{Si}_2\text{O}_6\)), is surprisingly fast, with an average \(^{14}\text{C}\) age of 26,000 years, rather than 30-95 million years as previously believed. Data show that \(10^4\) to \(10^5\) tons/y of atmospheric CO\(_2\) are converted to carbonate.

- The idea is that Peridotite carbonation may be accelerated via drilling, hydraulic fracture, input of purified CO\(_2\) at elevated pressure, and increased temperature at depth.

- The carbon-rich superfluid CO\(_2\) reacts with peridotite, creating calcite and magnesite, and an exothermic reaction. As they fill the voids they expand, causing the peridotite to crack, and thereby creating more surface area for the CO\(_2\) to react with.

- The authors claim that because of the high density of CO\(_2\) and the exothermic reaction, the rate is up to \(10^6\) times faster than natural rates, potentially consuming billions of tons of atmospheric CO\(_2\) per year.

- Evidently this for the moment is only a simple idea and a large amount of work is needed before it may eventually become a reality.
The hydrogen alternative?
A “Hydrogen” economy?

- Oil and NG are not only our main energy sources: they are also essential materials for a great variety of products (for example many petrochemical and chemical products including synthetic materials, plastics, pharmaceuticals, etc.).

- Given by nature as a gift, they are being used up rather rapidly and become significantly depleted and increasingly costly. We need to search for new sources and solutions.

- Much has been said about a future “hydrogen economy”. Hydrogen is indeed clean, giving only water and energy.

- Governments and some major industries seem to be committed to develop the “hydrogen economy” (see for example the statements by President Bush’s January 2003 State of the Union message and President Prodi’s talks at the EEUU).

- It is clear, however, that in order to achieve this, new ways without CO2 must be found to make it feasible.
Hydrogen is only an energy carrier

- However, hydrogen is not a natural energy source on our planet (in contrast to the sun and stars) and it may be presently generated for instance from natural gas or coal.
- Handling of this volatile and explosive gas is difficult, dangerous and costly, necessitating high pressure equipment and the use of special materials. No infrastructure exists for it and its costs, without a doubt, will be prohibitive.
- Even with the greatest care, any leaks would represent extreme explosion hazards, limiting wide use by consumers.
- The new sources of H2 must avoid the associated production of CO2 in the process, since its increase in the atmosphere is considered a major man made cause for global warming.
Fossil hydrogen from NG with no CO2 emissions
NG to H2 transformation?

- H2 production is 1.9×10^{11} Nm3/y, 17 Mton/y, energetically equivalent to $\approx 5\%$ of the world oil production (84 MBOL/d).
- Steam methane reforming (SMR) is the most common and least expensive method of producing commercial H2 as well as in the industrial synthesis of ammonia (10^8 t/y) from H2.
- The process is undertaken mostly starting from NG with 700 - 1100 °C with energetic efficiencies of NG to H2 of 70 - 80%.
- The main inconvenience is the associated large CO2 production of 29.25 kgCO$_2$/GJH$_2$.
- An alternative with no CO2 emissions is the one in which NG is heated enough to split spontaneously NG into H2 + carbon.

$$\text{CH}_4 + \text{H}_2\text{O} \rightarrow \text{CO}_2 + 4\text{H}_2$$

- As a main result, the H2 yield for a given NG is halved.

$$\text{CH}_4 + \text{heat}\left[\text{at 1600 °C}\right] \rightarrow \text{C} + 2\text{H}_2$$
The device is a simple graphite tube dissociator heated at very high temperature.

Natural gas is introduced at high temperatures and flow rates in the reactor to activate fast, pyrolytic dissociation into Carbon and H2.

A dense black carbon black smoke streams from the outlet end of the reactor.

Carbon black particles are extremely fine and difficult to filter.

Carbon black is recovered and separated (bag or precipitator).
Universal behavior of different measurements

- Extremely fast conversion time of methane splitting.

CIEMAT + U.P.M TEAM

Remarkable, over-all agreement
The best alternative to complement Oil:

Hydrogen + CO2 → Methanol
Methanol (not hydrogen) is the future!

- Organic methanol from bio-mass (eventually ethanol) has been very extensively used as organic substitute to Oil for almost all its applications. See f.i the Brazil’s pioneering work.
- Very large amounts of fossil NG are available: their cost at the point of production is usually very low (0.5 $/GJ); most of its added cost is transport with pipelines or liquefaction.
- A spontaneous, local conversion of fossil NG into H2 and black carbon without CO2 emissions is readily performed.
- Assume that we recover CO2 as a chemical material and to recycle it from some conventional source of concentrated CO2 waste, already “paid for” by the savings due to the CO2 conversion of the previous application (two for one).
- CO2 and hydrogen can produce methanol and water, a liquid substitute to gasoline in all distant transport applications; if in a concentrated source, it could be indefinitely recycled.

\[
\text{CO}_2 + 3\text{H}_2 \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O} \quad \text{CH}_3\text{OH} + 3/2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O}
\]
Alternate processes with CO2 preservation

New options

CONCENTRATED SOLAR ENERGY
- SOLAR DIRECT H2 CONVERSION

ELECTRIC FROM NUCL. OR SOLAR
- ELECTROLYSIS OF WATER

NAT. GAS FOR PROCESS
- METHANE DECOMPOSER
 - 100% CARBON TO STORAGE OR SALE
 - HYDROGEN

CO2 FROM PROCESS
- CO2 ACCUMULATION

CO2 RECOVERY FROM AIR
- CO2 ACCUMULATION

New option

spent CO2 recovery

The basic process with fossil NG combined with CO2 recovery

Transport and storage like Oil

METHANOL SYNTHESIS REACTOR
- CH3-OH

METHANOL TRANSPORT & STORAGE

METHANOL

AUTOMOTIVE SUBSTITUTION TO OIL
- CO2 RE-EMISSION

FIXED, LARGE INSTALLATIONS
- CO2 ACCUMULATION & RECOVERY

CONVERSION TO ETHANOL
- CHEM. PRODUCTS OF HYDRO-CARBON FUELS
- CO2 ACCUMULATION & RECOVERY

CENTRALIZED ELECTRICITY PRODUCTION
Conclusion: the future for transportation is methanol!

- Methanol is a bulk commercial chemical which can be obtained in many ways. A promising new method could be some already recovered CO2 reacting with hydrogen.
- Compared to H2, methanol is a convenient liquid product.
- Methanol is an excellent fuel in its own right and it can be blended with gasoline or used in the “methanol fuel cell”, producing electricity directly combined with air.
- Methanol can be converted to ethylene, the key material to produce hydrocarbon fuels and their products.
- Therefore it would be able to replace oil both as a fuel and chemical raw material without costly new infrastructures.
- It would provide a feasible and safe way to store energy, make available a convenient liquid fuel, and provide mankind with an unlimited source of hydrocarbons mitigating the dangers of global warming.
New Option: recovering spent CO2 from the atmosphere?

- According to this alternative to sequestration, the atmosphere of the planet would act as a temporary storage and transport.
- Air extraction is an appealing concept, because it separates the location of the CO2 source from its disposal. CO2 can be recovered from any product (including cars, airplanes, flames, fires, heating, etc), located far away from the sources.
- These dedicated sinks should behave like “synthetic trees”, removing the CO2 of the air (≈ 360 ppmV).
- A solar tower (“solar chimney”) is a air collector and a central updraft tube generating a strong convective flow through a chemical sorbent. Cold CO2 and sorbent combine. CO2 is recovered at high temperature.

(Haaf et al. 1983, Schlaich et al, 1990)

(SantaFe lectures july 09)
CO2 from air: a dream or a reality?

<table>
<thead>
<tr>
<th>TOWER PARAMETERS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Height tower</td>
<td>500.</td>
</tr>
<tr>
<td>Radius tower</td>
<td>55.</td>
</tr>
<tr>
<td>Diameter collector</td>
<td>4300</td>
</tr>
<tr>
<td>Area collector</td>
<td>14.5</td>
</tr>
<tr>
<td>Peak solar power</td>
<td>900.0</td>
</tr>
<tr>
<td>Tower wind efficiency</td>
<td>1.635</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AIR:-WIND ENERGY PRODUCTION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind speed</td>
<td>79.73</td>
</tr>
<tr>
<td>Air mass</td>
<td>321.6</td>
</tr>
<tr>
<td>Air mass /m2/sec</td>
<td>26.6</td>
</tr>
<tr>
<td>Kinetic air theor. power</td>
<td>78.9</td>
</tr>
<tr>
<td>Wind turbine conversion eff</td>
<td>0.50</td>
</tr>
<tr>
<td>Actual Wind power</td>
<td>39.43</td>
</tr>
<tr>
<td>Fract. windy hours</td>
<td>2190</td>
</tr>
<tr>
<td>Electric Wind energy yearly</td>
<td>86.36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO2: ACCUMULATION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2 volumic</td>
<td>0.36E-03</td>
</tr>
<tr>
<td>CO2 volume/sec</td>
<td>96.47</td>
</tr>
<tr>
<td>CO2 mass/sec</td>
<td>0.193</td>
</tr>
<tr>
<td>CO2 mass/h</td>
<td>694.6</td>
</tr>
<tr>
<td>Effective CO2 mass/y</td>
<td>1.52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EQUIVALENT COAL BURNING</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric coal burning equiv to Wind</td>
<td>0.108</td>
</tr>
<tr>
<td>Wind CO2/Coal CO2 (same electric energy)</td>
<td>14.03</td>
</tr>
</tbody>
</table>
New Option: Direct Hydrogen production without CO2 (cont)

- Hydrogen can be produced directly from water dissociation with the help of high temperature (solar) heat.

- But a spontaneous dissociation of water into H_2 and O_2 is only possible at temperatures above 3000 °C, far too high to be of practical use. Several simple thermo-chemical processes are under development in which concentrated solar heat, at temperatures of the order 1200 °C, splits H_2O into H_2 and O_2.

- Some optimal processes are oxi-reductions of ZnO/Zn, Fe_3O_4/FeO and Fe_2O_3/Fe_3O_4. They are cycles with a high efficiency, large scale and environmentally attractive.

- The accumulated hydrogen energy in good sunny regions is in practice about 50% of the incoming solar.
Thank you!