Santa Fe Institute
Summer School on Global Sustainability

Technology and Implications for Sustainability

Donald L. Paul
Executive Director, USC Energy Institute and
William M. Keck Chair of Energy Resources
Outline

- Summary thoughts from the first lecture
- Fundamentals
- Technology opportunities
- The next wave
- Closing thoughts
- Q&A
Global energy system

- Complexity: technology + business + policy
- Scale: “1% matters”
- Time: history, the present, and the future co-exist
- Global demand growth will continue – dominated by the developing economies
- Fossil energy will continue to be a primary source – conventional supplies will peak in the coming decades
- Diversification will be an expanding component – transition effects will be important
- Carbon management at scale - requires a solution for coal
Fundamentals

- Structure
- Participants
- Major trends intersect energy
- Opportunities pull development
Structure

Component technologies
Structure

Component technologies

Application systems and processes
Structure

Component technologies

Application systems and processes

Integrated delivery infrastructures
Structure: components, systems, and infrastructure

- **Laboratory Bench**: $ millions
- **Pilot Plant**: $ 10’s millions
- **Demonstration At Scale**: $ 100’s millions
- **Full-scale Production and Infrastructure**: $ billions

10+ Years
Diverse participants in the system

- Governments
 - Funding agencies
 - National laboratories
 - Defense and security installations
- Universities
- Non-profit research institutes
- Industrial and technology companies
- Venture capital and private equity investors
- Emerging technology companies
Diverse participants in the system

- Governments
 - Funding agencies
 - National laboratories
 - Defense and security installations
- Universities
- Non-profit research institutes
- Industrial and technology companies
- Venture capital and private equity investors
- Emerging technology companies

Tech Transfer Challenge: Alignment of interests
- motivations
- business models
- time frames
- cultures
Major technology trends intersecting energy

- Growing digital intensity
- Molecular transformation technology
- Advanced materials
Growing digital intensity

- Moore’s law
- Universal digitization- the data tidal wave
- Next-gen connectivity
- Human-digital and social-digital relationships
- Real-world robotics
Molecular transformation technology

- “Converts what you have to what you want”
- Both biological and thermo-chemical
- Synthetic fuels, lubricants, and chemicals
- Use CO2 as a feedstock?
Opportunities pull technology development

- Improving economic performance of existing supply chains and systems
- Extending existing resources / adding new resources / substituting resources
- Diversifying demand options
- Managing carbon at scale
Some specific opportunities

- “Digital Energy” – electron convergence
Digital Energy

- Opportunity drivers:
 - Supply chain efficiency and economic performance
 - Diversity the power grid
 - Manage increased complexity and variability
 - Create new infrastructure and energy use paradigms

- Technology enablers:
 - Exponential growth in digital technology and data
Digital Energy: “Smart Grids”

- Directly couples the world’s largest infrastructure systems
- Rides on the IT growth curve in sensing, digitization, and connectivity
- Creates large potential for efficiency gains and integration of highly-variable power sources
- Creates a system of unprecedented complexity and scale
Evolution and diversification of the power grid

“Smart Grids” WIND & SOLAR Distributed Generation

NATURAL GAS

BASELOAD

Carbon Management Energy productivity
Some specific opportunities

- “Digital Energy” – electron convergence
- Fuel feedstock diversification
Fuel feedstock diversification

- Opportunity drivers:
 - Conventional petroleum supply will peak eventually
 - Potentially enormous new feedstock sources exist
 - Low-carbon Fuel Standards emerging
 - Changes to the auto-mobility paradigm
 - Geopolitical factors

- Technology enablers:
 - Digital technologies
 - Molecular transformation technologies
 - Carbon management technologies
Continued advances in natural resource technologies

- Advanced subsurface imaging and geological characterization
- Precision well engineering and control
- Engineered reservoirs
- Extended operational systems
- Advanced materials and robotic production systems
Renewable fuels: next generation technology and new business models for scale

Conventional Crude

- Explore & produce
- Geological processing
- Transport
- Refine into liquid fuel product
- Distribute through established infrastructure

Bio-Crude

- Harvest
- Pre-process
- Sunlight + water + CO2 + nutrients + plant life
Some specific opportunities

- “Digital Energy” – electron convergence
- Fuel feedstock diversification
- Green supply chains / super-efficient use
Green supply chains / super-efficiency

- Opportunity drivers:
 - regulatory standards,
 - improved capital efficiency
 - lower operating costs
 - expanded markets

- Enabling technologies:
 - Universal digitization
 - Advanced materials and manufacturing
 - Re-use transformation technologies
Some specific opportunities

- “Digital Energy” – electron convergence
- Fuel feedstock diversification – every molecule counts
- Green supply chains / super-efficient use
- De-carbonization of coal
De-carbonization of coal

- **Opportunity drivers:**
 - Carbon regulation
 - Large installed base and huge resource
 - Synthetic fuels for diversification

- **Enabling technologies:**
 - Conversion / transformation technologies
 - Separation and purification technologies
 - Adaptation of O&G subsurface technologies
What’s next?

- Electricity storage at scale
- CO2 as a feedstock
- Resource switching
- New “consumers”
Technology and Sustainability

- Necessity and technical performance is not sufficient
- Substitution markets are much more difficult than growth markets
- Evolving the financial and business models for efficiency, renewable sources, and resource switching
Closing thoughts…

- Energy technology is driven by opportunity
Closing thoughts…

- Energy technology is driven by opportunity
- Many opportunities of scale exist
Closing thoughts…

- Energy technology is driven by opportunity
- Many opportunities of scale exist
- Technological intensity and complexity are increasing
- Continued technology development can be expected
- Fundamental advances will create new technology platforms
Closing thoughts…

- Energy technology is driven by opportunity
- Many opportunities of scale exist
- Technological intensity and complexity are increasing
- Continued technology development can be expected
- Fundamental advances will create new technology platforms
- Deployment at scale will take time and significant resources
Closing thoughts…

- Energy technology is driven by opportunity
- Many opportunities of scale exist
- Technological intensity and complexity are increasing
- Continued technology development can be expected
- Fundamental advances will create new technology platforms
- Deployment at scale will take time and significant resources
- An expanded and diversified effort is critical to meeting both economic and sustainability objectives
Questions?