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Abstract. In this paper, we show a kind of phase transition phenomenon in the probability

of uniquely reconstructable sequences (URS) under equal-probability independently and identi-

cally distributed (eiid) model and non-equal-probability independently and identically distributed

(niid) model, respectively. This URS probability is calculated, with the relative error approximate

1%, by doing Monte Carlo experiments. In the Monte Carlo experiments, we use a deterministic

finite automaton (DFA) to determine whether a symbolic sequence can be uniquely reconstructed

or not from all its substrings of length K (called K-tuples). Furthermore, we compare our experi-

ment results with the real protein sequences to identify a possible biological implication.
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1. Introduction

Given a symbolic sequence S over an alphabet ! of length L, we can easily obtain a multiset

of its all K-tuples† by sliding a K-sized window one letter by one letter. But can we uniquely

reconstruct the original sequence from this multiset? A simple question but defies any intuitive

answer.

Take the following 10bp long DNA sequence for example: S=TGTGTATGTC. The multiset
of all 3-tuple for this sequence is {TGT, GTG, TGT, GTA, TAT, ATG, TGT, GTC}. After care-
fully examination, one may construct “TGTAT GTGTC” from the above multiset. It’s a different

one which share the same 3-tuples with the original sequence. But how about K = 4 or K = 5?

The answer is that “TGTGT ATGTC” can be uniquely reconstructed from its 5-tuples multiset,

but not for K = 4. In contrast, another sequence “AAAAA AAAAA” is uniquely determined by

the multiset of its K-tuples at any integer K value, as long as K is no more than its length 10.

As a matter of fact, how to check whether a sequence can be uniquely reconstructed by its all

K-tuples is the core question of sequencing by hybirdization (SBH)‡ [8,10]. Hence, it has caught

many researchers’ attention. Pevzner [8] reduced this question to the Eulerian path problem.

Consequently, the Best theorem [3,4], an formula for the number of Eulerian cycles in a directed

graph, can tell us the number of reconstructed sequence from a K-tuples multiset after transform-

ing the original sequence into an Eulerian graph (ref. to [4] for more details ). Obviously, if and

only if the number of reconstructed sequence equals one, the original sequence could be uniquely

reconstructed. Actually, the Best formula gives much more information other than whether a se-

quence is uniquely reconstructed or not. In addition, Pevzner [8] and Kontorovich [5] showed the

sufficient and necessary condition for a uniquely reconstructable sequence, from different views.

Along this line, Li and Xie [6] recently proposed an effective algorithm of a deterministic finite

automata (DFA) to examine if a sequence can be uniquely reconstructed or not.

∗ These two authors contributed to this work equally. † In this paper, any substring with length K is

referred as a K-tuple. ‡ SBH is a method to sequence DNA.
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Easy to see from the previous examples that not all sequences can be uniquely reconstructed

for a given L and K. Naturally, we are interested in the probability that a random sequence of

length L can be uniquely reconstructed from the multiset of its all K-tuples, under independently

and identically distributed model (iid§). Or, in other words, what’s the proportion of the uniquely

reconstructable sequences (URS) chosen uniformly (i.e. eiid) or nonuniformly (i.e. niid) at ran-

dom from !L? Dyer [2] and Arratia [1] have proved the asymptotic limiting probability as L→"

for this problem. The rub is that their result is acceptable only for very large L, and the error

bound is not stable, sometimes rather large.

Instead, we implement a DFA to check if a symbolic sequence is a URS or not, no matter

how long the sequence is and regardless of the given alphabet !. Then we do Monte Carlo exper-

iments to compute the probability of uniquely reconstructable sequences, with a stable relative

error bound which approximate 1% (see Section 2 for more details). For this reason, it’s more

reasonable to figure out the uniquely reconstructable probability by our methods for any sequence

length L, especially efficient for L no more than thousands, which is much closer to real proteins.

Since proteins play an important role in organisms. Here we focus our work on amino acid

sequences, in comparison to previous works, which are mainly done on DNA sequences. Most

interestingly, we observe a phase transition like phenomenon, regarding to the K value, in URS

probability problem. At the same time, we propose formulas to estimate the critical point for the

phase transition phenomenon.

In addition, we compare our experiment results with the real protein sequences to discover a

possible biological meaning.

All the results mentioned above are shown in Section 3 and discussed in Section 4.

2. Method

2.1. Deterministic Finite Automaton (DFA)

We implement a DFA which will accept and only accept the uniquely reconstructable

sequences, according to the algorithm described in [6]. This DFA can work on any sym-

bolic sequence, regardless of the alphabet !, sequence length L and the tuple size K. It

reads through the input sequence letter by letter until it meets a certain kind of spatial

pattern which lead the sequence to be non-uniquely reconstructable. Loosely speaking,

this spatial pattern is an interleaved pair of repeated (K−1)-tuples (i.e. · · ·a · · ·b · · ·a · · ·b,
where a,b denote (K−1)-tuples) or triple repeats (i.e. · · ·a · · ·a · · ·a · · ·, where a denotes
a (K−1)-tuple) [1, 4, 6, 8].

2.2. Monte Carlo (MC) experiments

We do Monte Carlo experiments to compute the probability of uniquely reconstructable

sequences under eiid model and niid model, respectively. 100 Monte Carlo experiments

are carried out to calculate one probability for a specified K, L. Among each Monte

Carlo experiment, our C++ program samples 1000 sequences from the sample space

!L, according to the distribution of !L. 1000 sample points for each experiment are

enough, since under this condition the relative error is about 1%, which is acceptable.

(e.g. see Figure 1). We also draw the absolute error bar in the probability vs. K graphs

(Figure 3).

§ The iid model includes both eiid model and niid model.
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Figure 1: The bar represents the absolute error for probability of uniquely reconstructable se-
quences (URS) at K = 5,L = 1000, under eiid model, where 100 Monte Carlo experiments are

taken. As n
MC
=1000, the relative error reduces to 1%, which is acceptable.

2.3. Least Square Method

We use least square methods (LSM) [7] to derive the relationship between the critical

point of K (defined rigorously in Section 3.2) and sequence length L.

3. Results

3.1. Phase Transition Phenomenon

As mentioned previously, we pay attention to protein sequences. Thus, we choose the

20 amino acids as our alphabet:

!= {A,R,N,D,C,Q,E,G,H, I,L,K,M,F,P,S,T,W,Y,V}

Though our methods are applicable to any finite symbolic alphabet.
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Figure 2: The probability of uniquely reconstructable sequences VS. sequence length L and
tuple size K. Both two pictures display a kind of phase transition phenomenon.

Firstly, we carry out Monte Carlo experiments for eiid model, in which the sequence

length L range from hundreds to thousands, and K increases from one. The outcome

is depicted in Figure 2(a). To clarify the relationship between the URS probability
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and K value, we draw the corresponding 2-dimensional graph (Fig. 3(a)) for different

sequence lengths L. The bars in Figure 3(a) represent the absolute error coming from

Monte Carlo experiments. All errors deviate their corresponding average values about

1%, as shown in Figure 1.
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Figure 3: URS probability VS. tuple size K ( sequence length L=constant). Here, the bars stand
for the absolute error caused by Monte Carlo experiments. These two 2-dimensional graphs are

fetched from several sections of 3-dimensional graphs (Fig. 2). They show a clear cut phase

transition phenomenon for different sequence length L.

Similarly, we construct both the 3-dimensional and 2-dimensional graphs for niid

model, where weights ( Table 1) are adjusted according to the natural abundance of

amino acids gotten from NCBI online course [11].

Amino Acids A R N D C Q E G H I

Frequency(%) 8.3 5.5 4.2 5.3 1.3 3.9 6.3 6.9 2.2 6.0

Amino Acids L K M F P S T W Y V

Frequency(%) 9.9 5.6 2.4 4.1 4.7 6.8 5.4 1.2 3.1 6.7

Table 1: The frequencies‖of 20 amino acids from NCBI online course [11], reflecting the natural
abundance of amino acids.

Both 3-dimensional graphs (Figure 2) and 2-dimensional graphs (Figure 3 ) show

a kind of “Phase Transition” phenomenon. That is, the probability jumps suddenly

from a low value phase (e.g.< 0.1) to a high value phase (e.g. > 0.9), as K changes a
little compared with the probability. For instance, in Figure 3(a), the URS probability

approximates zero at K = 4,L = 1100 under eiid model, but the probability increases

rapidly to a value lager than 0.9 as K increases to 6.

Here, two point are worth noticing. One is that, the phase transition phenomenon

of eiid model is more obvious than that of niid model. Namely, the curves in Figure

3(b), though still very sharp, are a little smoother than those in Figure 3(a). We will

continue to analyze this aspect in the Discussion. Another is that, all the curves in

‖ The frequencies are round to integer (xx%) in our experiments. e.g. treating 8.3% as 8%.
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Figure 3(b) look like each other. This perhaps contain some scaling information among

these curves. But how about the curves in Figure 3(a) ?

3.2. Critical Point of K

So far, we have observed phase transition phenomenon both in the 3-dimensional graphs

(Figure 2) and in the 2-dimensional graphs (Figure 3). But what is the turning point of

this phase transition phenomenon? To elucidate it rigorously, we define the mininal

K value to be the critical point, at which the probability of uniquely reconstructable

sequences reaches a value larger than 0.9 for the first time. From now on, K0.9 is

referred to the critical points ofK. We summarize some critical points ofK, for different

sequence length L from 100 to 10000 in Table 2, under eiid model and niid model,

respectively.

Table 2: Critical points K0.9 of phase transition phenomenon VS. sequence length L, for

eiid model and niid model, respectively.

L 100 200 300 400 500 600 700 800 900 1000

K0.9 (eiid) 4 5 5 5 5 6 6 6 6 6

K0.9 (niid) 9 10 11 11 12 12 12 12 13 13

L 2000 3000 4000 5000 6000 7000 8000 9000 10000

K0.9 (eiid) 6 7 7 7 7 7 7 7 7

K0.9 (niid) 14 15 15 16 16 16 16 17 17

Furthermore, we derive the following formula to estimate the critical points of K,

by Least Square Method (LSM):

K0.9 = [1.4490logL+1.2121] , for eiid model (3.1)

K0.9 = [3.9749logL+0.9490] , for niid model (3.2)

where the brackets in equation (3.1) and equation (3.2) mean round to integer, since it’s

nonsense for K to be a decimal.

Figure 4 (a) and (b) portrays the error of formula (3.1) and formula (3.2), respec-

tively. In both figures, the red points denote the critical points K0.9 gotten from Monte

Carlo experiments (Table 2), and the blue lines stand for the results of LSM. As for eiid

model, the error arose from formula (3.1) is no more than One, regarding for integer K,

while the estimated critical points fit the real K value much better under niid model. In

fact, the error is zero for integer K under niid model.

4. Discussion

4.1. Comparing the results of eiid model and that of niid model

We notice that the phase transition phenomenon under eiid model is more obvious than

under niid model. Why this happens? Of course, the probability distribution of the
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Figure 4: Fitting the critical points K0.9 (red) with logL lines (blue), which are obtained

by least square method (LSM).

alphabet ! affect it. Although we do experiments only for one kind of parameter for

the niid model, we conjecture that the phase transition phenomenon prevalently exists

for any parameter of iid model. We also speculate that the phase transiton phenomenon

is sharpest for eiid model, rather than any other niid model, respecting to the same

alphabet !. Since most extreme value, such as the maximal or minimal value always

emerges under the uniform condition.

In addition, the critical points K0.9 of phase transition phenomenon are always larger

for niid model than that for eiid model, at the same L. The chief reason lies that, due to

the biased probability distribution of sample points (i.e. sequences) in the phase space

!L under niid model, these typical sequences of niid model are more likely to have long

interleaved pair of repeated or triple repeated (K−1)-tuples, which cause the sequence
cannot be uniquely reconstructed (see. e.g. [1, 4, 6, 8]).

We get the critical point K0.9 (vs. L) formula by LSM, but how to study mathemat-

ically the exact properties of the critical point is still an open problem.

4.2. About the Alphabet !

From our research, what the alphabet is composed of does not influence the URS prob-

ability, but the size of alphabet does. Hence, how to derive the exact formula for the

probability of uniquely reconstructable sequences in term of sequence L, tuple size K,

alphabet size |!| and the letter distribution over !, all of which will affect the URS
probability, is worth studying. Although Dyer [2] and Arrtia [1] have obtained the

asymptotic formula as L→ ". It’s still meaningful to get an exact one, respecting to

L, so that one can investigate the configuration of the URS probability analytically for

different sequence length L.

Another relative question is that, how does the alphabet size |!| affect the phase
transition phenomenon of the probability of uniquely reconstructable sequences? We

conjecture that there exists the phase transition phenomenon for any finite alphabet.

How to investigate this problem analytically instead of doing Monte Carlo experiments

is still unknown, while the computer experiments can not exhaust all the possibilities.

Besides, easy to see, a sequence over a small alphabet is likely to form a short
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interleaved pair of repeats or short triple repeats. Thus, the smaller the alphabet size |!|
is, the larger the critical point K0.9 is, with respect to a constant L. Since these repeats

are cause of non-unique reconstruction.

4.3. About Real Proteins

Using our DFA to scan the proteins in PDB.SEQ file [12] which is a collection of

SWISS-PORT entries. Above 90% entries of proteins in PDB.SEQ can be uniquely

reconstructed at K = 6, which consists with the result of Hao et al. [4] gotten by a

different method.

Surprisingly, that observation is close to the eiid model (ref. to Fig. 3(a) and Ta-

ble 2), under which the uniquely reconstructed probability exceeds 0.9 for different

L, ranging 100 to 1100, at K = 6. One possible explanation is that, in the primor-

dial soup, the amino acids which make up of proteins as we see nowadays may be

uniformly distributed, rather than nonuniformly distributed. And yet, in the evolution

history, proteins are shaped by the natural selection so heavily that mutations took place

in proteins, but still kept the original repeat patterns∗∗ which probably have important
biological function. Anyway, the fact that an majority of real proteins do have a unique

reconstruction at K = 6, to some extent, supports the compositional distance approach

to infer prokaryote phylogeny tree [9].

Another thing is also worth noticing. As indicated by Hao et al. [4], a small group of

proteins can only be uniquely reconstruction at large K value (e.g. SRTX ARTEN pro-

tein cannot be uniquely reconstructable until K = 101), which should be very very rare

according to our experiment results (Figure and Table 2). That implies these proteins

may have potential biological functions which are probably relevant to their interleaved

pair of (K−1)-tuple repeats or triple repeats. These repeats can be found out by modi-
fying our DFA, to further investigate these proteins’ functions.

5. Conclusion

Anyhow, to the best of our knowledge, the phase transition phenomenon and the meth-

ods (esp. DFA) we employ have not been reported so far.

Last but not least, the phase transition phenomenon in sequence unique reconstruc-

tion possibly has profound implications which are still waiting to be explored.
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