
Complexity Engineering
Harnessing Emergent Phenomena as Opportunities for Engineering

Jonas Buchli
Biologically Inspired Robotics Group

School of Computer & Communication Sciences
Ecole Polytechnique Fédérale de Lausanne, Switzerland∗

Cristina Costa Santini
The Intelligent Systems Group

Department of Electronics
University of York, UK†

Despite a lot of knowledge about complex systems the application of this knowledge to the en-
gineering domain remains difficult. Efforts are scattered over many scientific and engineering dis-
ciplines. In this contribution we would like to motivate the union of these efforts by establishing
complexity engineering as a discipline. We will motivate this initiative and show a few aspects that
we consider important to arrive with this goal. After a historically inspired call for unification of
the field we will present one of the most fundamental problems engineers are facing when deploying
complex systems knowledge, what leads us to the formulation of the self-organization – specification
tradeoff principle. Then, we dicuss what we consider central ingredients to complexity engineering:
i) theory, ii) universal principles, iii) implementation substrates, iv) designing, programming and
controlling methodologies v) collecting and sharing of experience in complexity engineering.

I. INTRODUCTION

As engineers we look with admiration, and often
some envy at natural systems. It seems that nature
has found ways to solve even real hard problems
with great ease and elegance. This has lead many
engineers and scientist to try to understand and ul-
timately harness the principles of nature for their
own problems - it is not new that natural systems
inspire engineers and scientists – but, only recently
we started to gain insight and understanding in the
mechanisms that give them their unique properties.
Remarkably unifying principles have been found to
rule very different systems, this research can be sub-
sumed under the term “complexity science”. From
the knowledge and understanding collected in com-
plexity science we can possibly profit and devise
solution hitherto unsolved or partially solved engi-
neering problem. As we will argue, however before
we arrive with a methodological approach to such
problems there is a need for formalization of the
field. Quite some people are proposing ways of how
to harness complex systems for engineering, yet we
feel that the field is very dispersed and scattered
over all different existing disciplines. In this paper
we would like to show how the field could profit from
a unification and formalization - into a discipline
that we propose to call “complexity engineering”.

Complexity engineering is in some way the art

∗Electronic address: jonas@buchli.org; URL: http://birg.
epfl.ch
†Electronic address: ccs500@york.ac.uk

of exploiting opportunities coming up in the sys-
tems dynamics. We can direct and facilitate the
occurrences of opportunities rather than just wait
for them to pop up. Complex systems understand-
ing can help us with this.

In this paper we would like to discuss some prin-
ciples and ideas; some guidelines for complexity en-
gineering. As in complexity science one looks for
underlying and unifying principles among many sys-
tems, in complexity engineering we look into these
different systems and their underlying principles
from the point of view of applications.

This paper does by no means provide complete
answers - its main idea is to motivate the need for
complexity engineering and show some of the is-
sues related to it, and especially stimulate people
to think about “complexity engineering”.

II. MOTIVATION

“The more science becomes divided into special-
ized disciplines, the more important it becomes to
find unifying principles. Since complex systems are
ubiquitous, we are confronted with the challenge
of finding unifying principles for dealing with such
systems. In order to describe a complex system at a
microscopic level, we need an enormous amount of
data which eventually nobody, even not a society,
is able to handle. Therefore, we have to introduce
some sort of economy of data collecting or of
thinking. In addition, we can hope to obtain deep
insights when we find laws which can be applied to
a variety of quite different complex systems. When
we look at universal laws it is wise to ask at which



2

level we wish to formulate them; be it microscopic
or macroscopic.” [11]

Despite enormous technological progress and
abilities, there are still a lot of problems that defy
an understanding let alone taking controlling influ-
ence over them.

A common property of these systems is that their
complexity makes it impossible to treat them with a
“divide and conquer” approach, where the problem
is split up in smaller problems and in the end the
solutions are assembled to give the overall solutions.
Complexity science has made an enormous progress
in the analysis and understanding of such systems
yet the yield for practical problems is scarce.

We argue that the engineer that would like to use
this body of knowledge has a different goal then the
complexity scientist has in mind and this shapes the
way of how to approach complex systems: “But now
one must use this understanding to design systems
whose complex behavior can be controlled and di-
rected to particular tasks. From scientific descrip-
tions of the behavior observed in complex systems,
one must learn how to engineer complex systems
with specified behavior.”[37]

As of now, in many fields engineers deal with
complex systems, yet the problems are not ap-
proached from a complexity point of view, e.g. the
Internet, power grids, traffic planning, airline plan-
ning, etc. We see the applications of complexity
engineering to 1) problems we do not have (good)
solutions to, e.g. economics, robotics (swarms, lo-
comotion, collective robotics), management and de-
ployment of distributed systems, nano-systems, cer-
tain aspects of programming eco-engineering) and
2) systems that are complex but were not engi-
neered swith complexity in mind (e.g. the Internet
[5, 36], power-grids, traffic systems).

While we will discuss more ingredients for com-
plexity engineering later, we will first focus on what
we consider the most fundamental and important
aspect of turning complexity engineering into a ma-
ture engineering discipline. Namely, the need for
a formalization of the techniques and concepts in
applying complexity science to engineering, thus
developing a common language for complexity en-
gineering. We argue that complexity engineering
should be empowered by a strong theoretical fun-
dament along with easy access to practical experi-
ence, the dissemination of the the gained knowledge,
experience and methodologies should be facilitated
by establishing curricula and centers of research
around complexity engineering. We will highlight
the motivation for constituents of complexity engi-
neering in the following.

In order to arrive with an understanding on how
engineering disciplines come into existence and ma-
ture we can we look back at the history of control

engineering. The first industrial exploitation of con-
trol concepts has been in the 18th century for the
control of steam engines. In order to harness the
power of steam engines there was a need of con-
trolling the energy production of these machines,
which in the rotary steams engine translated in con-
trolling the speed of revolution. One of the main
mechanisms to control the steam engines was the
centrifugal fly-ball governor whose design was com-
pleted by Watt in 1788 [20]. This was the first use
of feedback control which reached the attention of
a wide audience.

Many of the problems of feedback control were
known from this mechanisms, i.e. loss of stability,
oscillations, tradeoffs between speed of control and
accuracy.

However, [20]: “The design of feedback control
systems up through the Industrial Revolution was
by trial and error together with a great deal of engi-
neering intuition. Thus, it was more of an art than
a science. In the mid 1800’s mathematics was first
used to analyze the stability of feedback control sys-
tems. [Since] mathematics is the formal language of
automatic control theory,[. . . ]”.

The mathematical formalization and treatment
helped to realize that stability problems are not spe-
cific to steam engines, to the fly-ball governor or to
the way they were implemented, it rather showed
that there are underlying, abstract principles gov-
erning all feedback loop systems, disregarding how
they are implemented or what they are used for.
Mathematics, systems theory in special was the way
on how to formulate and understand these princi-
ples.

“ [. . . ] a mathematical understanding en-
ables one to distinguish those model properties
which are essentially model-independent or well-
understood from properties which add key new ele-
ments [. . . ]”[8] - while Grossberg talks about mod-
eling here, in the same vein this understanding help
us to separate abstract design issues from imple-
mentation details and considerations.

Another important aspect of a converging new
discipline is the fact that strong theoretical results,
often in forms theorems, arise. Often they are nega-
tive and constraining – saying “you can not do that
no matter how hard you will try”. This is however
quite powerful as it gives boundaries of what is pos-
sible and they do not have to be explored by trial
and error, the hard way, spending a lot of money
effort. Also in control engineering such theorems
exist and projects are known that could have saved
millions of dollars and a lot crashed equipment by
having access to this theorems [23].

It is important to realize that the formalization of
the field by no means implies that the field is some-
how frozen or does not evolve anymore. Quite the
contrary, by formalizing the ideas one can realize



3

in what aspect these are special cases and thus for-
mulate more general frameworks, leading to a fruit-
ful feedback loop between theory and praxis. This
positive feedback loop ultimately gives the field the
momentum and the success that can be observed in
modern control and communication engineering.

It is only in the second part of this century that
the field of control engineering as such has emerged,
formalized and put on a firm mathematical ba-
sis. By this, many before distinct problems became
treatable in a unified way. However, it is in this time
that the most powerful theoretical results and con-
cepts have emerged. The formalization in the years
before was a necessary prerequisite for the discovery
of these principles. Control engineering nowadays is
a multi-million dollar business and our modern life
relies heavily on it.

Communication engineering has gone a similar
way, from intuitive understanding of problems and
solutions to a development of a firm mathematical
background which helped the field to grow enor-
mously and contributed to the development of new
applications in an ever growing pace. It is prob-
ably not a coincidence but a common property of
emerging and maturing engineering disciplines that
they need to go through these stages: problem,
intuitive/trial-and-error engineering and solutions,
formalization, theoretical results, (commercial) suc-
cess/adaptation.

In complexity engineering we are in the early
stages of the development, in the “trial and error,
intuitive engineering” phase. There are no method-
ologies, no common language and no common body
of experience.

III. THE SELF-ORGANIZATION –
SPECIFICATION TRADEOFF

Even though emergence and self-organization are
beautiful and fascinating phenomena, in technologi-
cal systems they do not always produce appropriate
effects, e.g. no one would dispute that complete,
nation-wide failures of power grids are not effects
we are striving for when designing and construct-
ing such systems. Examples of systems where self-
organization leads to strong undesirable effects are
countless: virus spread, cascading failures, buckling
in steel structures, earth quakes, avalanches, riots
and panics to name only a few.

On the other hand complexity science has clearly
demonstrated very powerful properties of self-
organization, properties that would clearly be ben-
eficial to harness. Such properties include robust-
ness, adaptivity, the ability to cope with ill-posed
problems, optimization under constraints, exploit-
ing synergies, resolving redundancies amongst oth-
ers.

“But if a system is to be used for engineering,
it must be possible to determine at least some as-
pects of its behaviour. Conventional engineering re-
quires detailed specification of the precise behaviour
of each component in a system. To make use
of complex systems in engineering, one must re-
lax this constraint, and instead require only some
general or approximate specification of the overall
behaviour of systems.”[37] When trying to exploit
self-organization in engineering system we are al-
ways faced with the same fundamental problem: On
one hand we need certain functionality in the sys-
tems, i.e. we have to be able to specify what the
system should do (or a part of it). On the other
hand, if we specify “every” detail of the system, if
we design it by decomposing it, “linearizing” the
problem, then no self-organization will happen and
no emergent phenomena can be harnessed[40].

Thus, there is a tradeoff between self-organization
on one hand and specification or controllability on
the other: If you increase the control over your
system you will suppress self-organization capabil-
ities. If you do not suppress the self-organization
processes by avoiding constraining and controlling
many variables it is difficult to specify what the
system should do. This a very fundamental trade-
off that we have to consider, we call it the self-
organization – specification tradeoff principle.

Let us discuss one way to approach this princi-
ple in a more formal way by relating it to existing
theories.

A. The continuum of systems variables:
constrained vs. unconstrained variables

We introduced the self-organization specification
tradeoff principle in an intuitive way. Here we cap-
ture and discuss this problem in a more concise way.

What we try to achieve by complexity engineering
is guided pattern formation. The function that the
system should fulfill can be looked at as a partially
specified pattern.

Thus, a part of the pattern[41] is specified, the
rest of the system completes the pattern on the ad-
ditional degrees of freedom. It is natural to turn to
theories which deal with pattern formation, there-
fore the background of the following comes from
non-equilibrium statistical physics and nonlinear
dynamics, where it has been realized, that princi-
ples of this field apply to a vast number of other
systems and are able to explain many aspects of
pattern formation. Thus, we propose to dicuss this
in terms of Systems variables, i.e. variables that
describe the state of the system on a chosen level
of abstraction. This discussion bases of the syner-
getic viewpoint of systems [10]. It has been real-
ized that in systems with many active interacting



4

subsystems the system often self-organizes in low
dimensional dynamics: the variables that describe
this behavior are the order parameters of the sys-
tem. Variables influencing the behavior of the or-
der parameters in a critical way are called control
parameters[42]. This means we can effectively de-
scribe the state of the system with the order param-
eters, however changing the control parameters the
system can start to break up the order and more
and more variables are needed to describe system
(let us assume for the discussion a maximum of N
variables describes the systems on the subsystem
level, where usually N → ∞).

The functionality of the system can be expressed
by the relationship of the state of a subset of the sys-
tems variables or aggregates of them (order param-
eters are clearly a natural choice) and constraints or
boundary conditions on another subset of the sys-
tems variables (or aggregates, i.e. the control pa-
rameters). As an example consider a logic gate im-
plemented in VLSI. If voltages V1 and V2 are applied
to the inputs of the gate Vo should be f(V1, V2)[43],
where f is the logic function implemented with the
gate. V1,2 are variable constraints applied to the
system, furthermore there are built-in constraints
by the choice of the doping, geometry and connec-
tion of the different layers, etc. Vo, an aggregate
measure, is a statistic measure about the charge
carrier distribution in a part of the semiconduc-
tor. (Note that the distinction between constrained
and unconstrained is somewhat subtle, sometimes
it might look like the number of constrained vari-
ables is actually small, but in fact it is not. Con-
sider transistors used in digital logic, in both oper-
ation modes (“binary 0” and “binary 1”) by apply-
ing strong fields (external and built-in) the designer
ensures that all variables (position and momentum)
of the charge carriers follow a very specific statistics
which is well known and easy to handle, so the sin-
gle control variable V in effect strongly constrains
an enormous number of state variables). Another
example is a hydraulic piston [9]. It can be very well
treated with thermodynamic formalism, i.e. it is a
system with a huge number of state variables, but
for our purposes we engineer the system in such a
way that the resulting movement is essentially one
dimensional and the position in this dimension can
be exactly controlled by the control parameter pres-
sure in the liquid.

Important to realize from this discussion is that
we put the system in a mode of operation where to
constraints rule the system. The effects of the con-
straints are designed to be orders of magnitude big-
ger then any self-organization mechanism, so they
can be neglected in the analysis and prediction of
the systems behavior.

In the example of the logic gate this corresponds
to the fact that the gate is not operated close to

the switching region where we would see inherent
oscillations, flipping back and forth enhanced fluc-
tuation all hallmarks of self-organization process
among the charge carriers. Another example can be
found in chemistry, where most chemical reactions
are studied in their equilibrium state though being
exemplary nonlinear systems [27]. As reported by
Epstein in [6], simple chemical systems and reac-
tion mechanisms involving a small number of com-
ponents may give rise to a remarkable variety of dy-
namical phenomena if the systems are maintained
sufficiently far from equilibrium.

Let N be the number of systems variables needed
to describe the system on a chosen level of abstrac-
tion. We introduce a new property to character-
izes the system: the number of constrained sys-
tem parameters Nc (along we introduce the num-
ber of unconstrained system variables Nu where
Nu + Nc = N).

By constrained system variables we describe the
variables on which as engineers we impose con-
straints in order to bring the system to exhibit a
certain functionality. Nu are unconstrained vari-
ables on which only the system takes influence by
its intrinsic dynamics.

As we have already seen there seems to be a fun-
damental conflict between self-organization on one
hand and the need for control and specification in
engineering on the other hand: if one constrains all
the variables (i.e. Nc → N) no self-organization will
happen because we completely impose the dynam-
ics by external forcing and no emergent phenomena
can possibly be harnessed.

The key to harnessing self-organization for engi-
neering is the let loose of the control over almost
all variables but a few, by that the system can find
its own way of dealing with the situation on all the
dimension that are not controlled and (as supposed
by thermodynamics) find efficient solutions.

Thus, through the study of the system’s dynamics
one will be able to control the system by determin-
ing just a few variables.

Sometimes however, there is only a limited way
of influence the choice of Nc and Nu, e.g. crowd
control, traffic management, ecological engineering,
operations research.

We see that in that sense classical engineering is
a limit case (Nc → N) of complexity engineering.
Further it comes directly clear, that noise in your
system can be beneficial as it helps to explore new
possibilities in the system as they come up. If the
new mode of the system is a strong attractor the
system will be stable anyway, if it is not a strong
attractor the system becomes instable and branches
of to find new stable states. But this can only hap-
pen if the system is not constrained too much. On
the other hand the system clearly has to be con-
strained in the variables on which we have to imply



5

boundaries out of safety or other functionality con-
siderations.

Now, of course it is not sufficient to go to a given
system, pull out the control over many of the vari-
ables and think it will self-organize into doing some-
thing useful after that. Rather we have to careful
engineer the right interactions into the system, so
that the systems self-organizing capabilities serve
our purpose, i.e. they do satisfy and support the
constraints on Nc. The methods how we can do that
are subject of complexity engineering and complex-
ity science is the method to arrive with this knowl-
edge.

B. Self-Organization

Let us shortly discuss why should we try to use
complex systems and self-organization for engineer-
ing in the first place? What is interesting about
self-organization for engineering?

Robustness – Self-organized processes are often
very robust, as they consist of a vast num-
ber of low level entities. The behavior is a
low dimensional attractor of the high dimen-
sional system dynamics, this compression in-
duces redundancy and robustness.

Adaptivity – Due to the constant operation of the
self-organizing mechanisms, when the bound-
ary conditions change, the system rearranges
to a new mode of operation.

Emergence– Self-organization offers new opportu-
nities, by showing emergent phenomena that
are not a result of the function of the single el-
ements but a consequence of the interaction of
these elements. The system can produce new
unexpected results which can possibly be har-
nessed. However the emergence of new phe-
nomena can also be difficult to handle, can in-
duce problematic effects, we will discuss this
issue in the next section.

Several examples of self-organization can be
found in natural and artifical systems. In [15] the
authors show how a macroscopic ramified network
can minimize the resistance by self-organizing into
suitable structures. In [3] the authors show how, if
the body properties of a hopper robot is exploited
by complementary controllers energy efficient for-
ward locomotion emerges. In chemical systems
self-assembly and self-organization can be found
and harnessed in various ways: “In particular,
the spontaneous but controlled generation of well-
defined, functional supramolecular architectures of
nanometric size through self-organization represents
a means of performing programmed engineering

and processing of nano-materials.”[19]. The field
of supramolecular chemistry offers possibilities to
build functional molecular and supramolecular de-
vices by the setting of the right state variables, ar-
riving at a system that will self-organize to behave
as expected, as designed.

In biological systems one finds striking examples
of self-organization, and “Indeed the phenomenon
of self-organization may have been responsible for
the emergence of life itself [...]”[18, 26]. For exam-
ple, the tobacco mosaic virus (TMV) [17], which
is a helical virus particle composed of 2130 identi-
cal subunits, each comprising 158 amino acids, can
be dissociated into its component parts and then
self-reassembles accurately in vitro to give totally
functional viral particles.

In a recent review paper [39], Zauner presents
new concepts of information processing, stressing
that one needs to loose “narrow prescriptive con-
trol over elementary structures and function in or-
der to develop self-organizing architectures”. Then
he points two issues that needs to be addressed: a
novel engineering approach that does not depend
on the direct control of individual components and
the development of computing concepts that exploit
rather than suppress the physics of the materials
used for their implementation.

IV. COMPLEXITY ENGINEERING

In this section we will describe in more details
some of the aspects that we think are needed for
a mature field of complexity engineering. Briefly,
these are A) theory, B) universal principles, C)
implementation substrates, D) designing, program-
ming and controlling methodologies E) collecting
and sharing of experience in complexity engineer-
ing.

Our working hypothesis is that by (i) identifying
the problem through a complexity engineering per-
spective; (ii) finding the adequate substrate (com-
plex system) and finally (iii) being able to program
or design that system (finding its basins of attrac-
tion, state variables, initial conditions, boundary
conditions and not trying to compute and deter-
mine its input-output mapping); it will be possible
to solve complex problems and have the artificial
systems that would exhibit the desired properties
of robustness, adaptivity and emergence.

We focus on a way of how to approach and to
think difficult engineering problems and we will try
to show how thinking on abstract/meta-level about
the problems can help to overcome the traditional,
linear and static mind-set and way of thinking.



6

A. Theory, fundamentals, theorems

The theory will be the unifying language of com-
plexity engineering, complexity science will be at
the core of the theory, but will have to be enhanced
by engineering specific aspects. Being able to talk
about the different aspects of engineering, i.e. sys-
tems, specifications, etc in a clear formal way will
help to see common principles in seemingly differ-
ent systems and transfer this principles to different
substrates. Our claim is that by having complexity
engineering as a field, the theorems that are shared
between different areas are going to emerge as com-
plexity engineering theorems, much as the waterbed
formulas and stability theorems in control engineer-
ing (cf. [29]) or the Shannon-Hartley theorem in
communication engineering [28].

B. Universal concepts, paradigms and
principles

The theory will help us to look at different sys-
tems and understand their common properties. To
illustrate this, consider yourself looking at a movie
of a traffic jam filmed from a helicopter, the movie
is sped and all of a sudden you are able to ob-
serve wavelike structures that travel through the
traffic jam, it reminds you of water waves. Are
there common principles ruling both systems? Can
the knowledge gained and tools developed in one
field (the water waves) possibly be harnessed for the
other problem (traffic control)? Recent research in
the area of complex systems suggest an affirmative
answer, not only for the concrete example [24], but
for finding universal laws governing very different
systems [10].

Thus, there are principles which can be formu-
lated on an abstract level (i.e. independent of their
implementation or specific system supporting it).
Pointing out these abstract principles is important
because when different systems share common prin-
ciples in their mode of operations, in their dynam-
ics, it is possible to transfer knowledge and tech-
niques between these systems.

Next we give a few examples of abstract princi-
ples that can be applied to solve different problems.
This list is by no means conclusive and we hope that
it will grow enormously over time.

Reaction Diffusion systems – Create coordi-
nated spatio-temporal patterns [4, 34, 38].

Pattern recognition – Compare input against
templates [12].

Optimization – Optimize one or several aspects
of a system under constraints [15].

Stochastic Resonance – Improve a system’s
performance by adding noise [31, 35].

Diffusion – Exploit gradients to distribute infor-
mation or material.

Traveling waves, Solitons Packets of activity
travel through the system, transfer informa-
tion and interact.

Winner-takes-all – Implements a decision pro-
cess, one out of many is chosen.

Voronoi diagrams – Find points of equal dis-
tance from a number of points [1].

Edge detection – Find and enforce regions in
which properties change in an abrupt fashion
[4, 22].

Ant algorithms – Solve shortest path problems
[33].

Coupled Oscillators – Create coordinated but
flexible cyclic patterns and waves, synchro-
nized and coordinated with input. Control
and modulate them with low dimensional con-
trol signals. Reduce the dimensionality of the
control problem [2, 3, 14].

Note that many of the principles in this list Tur-
ing complete machines can implement, but this
is probably not the interesting fact, since von-
Neumann computing is probably not the appropri-
ate concept to approach many real world problems,
i.e. people deal efficiently with many NP complete
problems on a daily bases while the “theory of com-
putation” has a hard time with them. Thus, “vN-
computing” is not the principle you are looking for
when approaching this kind of problems. Often one
does not look for “common purpose” or “univer-
sal” machines, but rather for special purpose, non-
universal machines that are then however orders of
magnitudes more efficient in dealing with the given
problem. It is our goal to strive for “universal prin-
ciples” i.e. methodologies of how of devise such spe-
cial purpose machines for a given task.

C. Implementation “substrates”

Now there are a wide range of different systems
that support one or several of the above principles,
consequently they can be used as an implementa-
tion substrate for such. Important to note here is
the fact that the physical systems have a charac-
teristic time and length scale (or a range thereof)
- thus depending on which scales we would like to
implement above one or the other substrate might
be more or less suitable, e.g. reaction-diffusion dy-
namics can be exploited in chemical systems (with



7

time scales ranging from minutes to fraction of sec-
onds) or in semi-conductors with time scales in the
order of 10−3 − 10−12 s. We highlight the connec-
tion between implementation substrate and the ab-
stract principle (cf. A.) for a few examples, then
we give a list of more systems that can possibly be
used. Again this list is by no means complete and
its main point here is to stimulate the discovery,
documentation and exploitation of many different
possibilities and last but not least a discussion on
how we implement our solutions.

Reaction-diffusion media – In [1] Adamatzky
presents space-time patterns in active nonlinear me-
dia and suggest some useful applications such as im-
age processing, computing logic functions and con-
trol of robots. He presents some principles, such
as the Voronoi diagram that can be constructed in
reaction-diffusion processors, a light-sensitive chem-
ical controller, a micro-array of coupled oscillating
gel actuators in BZ reaction, etc.

Amorphous computing – Amorphous Computing
[7] aim is to invent programming methodologies
for multi-agent systems. In [25] Nagpal presents
how organizing principles from multi-cellular organ-
isms may apply to multi-agent systems, by pre-
senting examples of biologically-inspired local prim-
itives (such as morphogen gradients and positional
information) and global patterns (such as cell differ-
entiation) for engineering robust collective behav-
ior.

Locomotion control in robotics – In locomotion
control for dextrous, legged robots often the biolog-
ical concept of the central pattern generator (CPG)
is deployed [14]. The CPGs, from the abstract point
of view, are systems which generate complex coor-
dinated, usually cyclic patterns for locomotion, res-
piration, flying, stomatogastric systems etc. CPGs
are often modeled by coupled nonlinear oscillators
which are then in turn implemented in microcon-
troller/computers, but also in analog electronics
[21, 30].

Thus, this three examples give an idea of how
the following systems could be used to implement
functional systems:

• doped materials

• supramolecular systems - liquid crystals

• biomolecules: proteins, enzymes

• analog electronics

• chemical reactions

• reaction-diffusion media

• quantum systems

• Josephson junctions

• crowds

• waves

• living systems: bees, ants, bacteria, virus, etc.

For the successful exploitation of many of the
above substrates one of the biggest obstacles is the
interfacing problem, i.e. how to give input and read
the output of the system. As for now, the interfac-
ing to electronic systems is developed best.

Of course for many implementations, just for
their ease of configuration, modification and inter-
facing, digital computers of some sort will still be
the implementation substrate of choice - at least
unless their lack of intrinsic dynamics and par-
allelization outweighs their universality. Further-
more, sometimes a part of the “implementation”
substrate is given, e.g. in ecological engineering or
traffic management.

D. Designing, programming, controlling

In complexity engineering one works on all (or
at least several) scales, from micro to macro, as
opposed to traditional engineering,which generally
searches for solutions on the same scales. For exam-
ple, one possible way to approach a problem is first
to identify suitable macroscale behavior; then inves-
tigate on the microscale the mechanism that causes
this behavior and finally find the suitable substrate
to implement the microscale mechanism.

Looking at a problem from the complexity per-
spective is already the way towards the solution. A
few points that help to look at a system from the
“complexity point of view”:

• What happens in non-nominal states?

• Which regions are “problematic” (enhanced
fluctuations, oscillations, . . . )?

• What are the important assumptions, simpli-
fications and abstractions and bounds of va-
lidity of the way of analyzing and designing
the system? What happens if they are invali-
dated?

• Think about nonlinearities and second order
effects [32].

• Identify gradients, find the throughput trough
your systems (what makes them open, active
systems) [13].

¿From a conceptual point of view, in order to
tackle complexity engineering problems, one should
(i) be able to take an abstract perspective (cf. A.
and B. ); (ii) take what could be considered dis-
advantage as advantage (e.g. stochastic resonance,
robotics and intrinsic dynamics) and (iii) enable the
system to intrinsically harness opportunities.



8

E. Gained methodology and experience

In the past every field of engineering has started
out from practitioners, i.e. people gaining a lot of
experience with common problems occurring and
developing intuitively approaches on how to solve
them. In a later stage theoretical fundaments are
laid and the experience is collected in a systematic
fashion.

Furthermore, in every field of engineering there is
a lot of rules of thumb, lessons that can be learned
from former projects, methodologies and so on, es-
sentially connecting theory and practice. There are
formal opportunities (journals, meetings, colloquia,
etc) and more informal channels where this infor-
mation is collected and distributed. Engineering
students get exposed to it early in their formation
and learn “the art of engineering” next to the for-
mal concepts largely by being involved into discus-
sions, projects and being exposed to the “common
knowledge”.

We should aim at forming such opportunities for
complexity engineering as well. This means organiz-
ing conferences, research networks, and especially
also curricula aimed specifically at complexity engi-
neering.

V. DISCUSSION

Thus far we would like to discuss a few important
points related to the presented ideas.

We have motivated the need for establishing com-
plexity engineering as a discipline, however a com-
mon fear that opposes the deployment of complex
systems knowledge in engineering is the idea that
all control over the system will be lost, however
the issue about complexity engineering is not that
the developed systems will be unpredictable, non-
deterministic or uncontrolled. The output (i.e cer-
tain aspects) may be predicted and controlled - it is
more how the systems arrived to that output that
can not be known, unpredictable, complex or not
computationally reproducible. Moreover, the guar-
antees about the functioning of the system will be
of statistical nature. This is not really new, in all
engineering work, the guarantees that can be made
about a system are limited and essentially of sta-
tistical nature. Furthermore, it shows a wrong un-
derstanding of how the development of technology
works if a 100% understanding of the functioning
of a system is demanded before it is accepted. Hu-
mans have worked throughout history with systems
which they did not fully understand but neverthe-
less brought them good services, (e.g. plants, cattle,
electricity), often the understanding is deepened af-
ter which can lead to a yet better or more efficient
use. Complexity engineering is the way to find the

balance between controllability,predictability and a
letting loose of some aspects of the system. We
hope to show one way on how to think about this
balance in this contribution. Further, complexity
engineering is not meant to replace “traditional en-
gineering” approaches, but is merely an extension
or generalization to it. Complexity engineering has
to be applied to the appropriate problems.

Even if the complexity engineer will take inspira-
tion and learn a lot from physical and living system,
his goal is not in first line to understand nature, thus
if he finds that a few modifications to a model serve
him well, even if this modifications are not justi-
fied by observations in the real systems, there is no
reason why he should not use the modified system
and no justification for the change is needed. If on
the other hand the goal is to devise a model which
should serve for understanding the real world phe-
nomena more care with modification is in place, but
this is the primary concern of the scientist.

In order to realize the importance of complex-
ity for engineering one needs to consider that every
system is basically a complex one. most of the tra-
ditional systems are operated in a regime where the
“complexity properties” are neglectable. While tra-
ditional engineering was the art of taking the com-
plexity out of the systems, we now have to gently
allow complexity to come back in and learn to ex-
ploit it for our own good.

VI. CONCLUSION & OUTLOOK

While we are certainly aware of the fact that we
can not force a new discipline to emerge we are con-
vinced that we can stimulate its formation. We have
tried to motivate the need for complexitiy engineer-
ing as a displine and hope that many engineers and
scientist will contribute in the future. We argue
that complexity science with a complexity engineer-
ing perspective in mind could be more goal directed
than todays distributed attempts.

While the ideas presented here, even if founded on
rigorous theories, are rather conceptual we plan to
investigate some of the aspects we presented here in
more detail, especially the self-organization – spec-
ification tradeoff principle. It should be possible
to show the tradeoff on a simple model where one
can adjust the number of constrained variables and
investigate on the effect it has on the system.

Lastly, it could be that the discussion of con-
straints and how to organize them goes well beyond
sole application to engineering but is of more funda-
mental importance: In [16] Kauffman writes “I said
we have no theory of organization, but I have the
deep suspicion that this reciprocal linking of work
and constraints on the release of energy that con-
stitutes work is part of that theory. If so, notice



9

that this is not part of physics at present, nor of
chemistry, nor of biology.”

Acknowledgments

Thanks to the people that have brought surfing and
paragliding to the world. In both of these sports a lot
about harnessing opportunities in self-organized system
dynamics for our own good can be learned. Force it
and you loose – be prepared, work with the elements and
have the ride of your life!

We are grateful to the Santa Fe Institute for the or-
ganization and support of their annual summer school

in the frame of which the initial work on this paper
has been done. We would like to acknowledge the im-
portance of the discussions with all the lecturers and
participants of the CSSS05, especially the tumbleweed
gang.

Further, we are grateful to our supervisors, Auke Jan
Ijspeert (EPFL) and Prof. Andy Tyrrell (University of
York) for discussions and support.

J.B. acknowledges support from the Swiss National
Science Foundation through a Young Professorship
Grant to Auke Jan Ijspeert.

C.C.S. is supported by the Programme Alban, the
European Union Programme of High Level Scholarships
for Latin America, scholarship no. E04D028324BR.

[1] A. Adamatzky. Molecular Computing, chapter
Computing in Reaction-Diffusion and Excitable
Media: Case Studies of Unconventional Processors,
pages 63–90. MIT Press, Cambridge, 2003.

[2] J. Buchli and A.J. Ijspeert. Distributed central
pattern generator model for robotics application
based on phase sensitivity analysis. In A.J. Ijspeert,
M. Murata, and N. Wakamiya, editors, Biolog-
ically Inspired Approaches to Advanced Informa-
tion Technology: First International Workshop,
BioADIT 2004, volume 3141 of Lecture Notes in
Computer Science, pages 333–349. Springer Verlag
Berlin Heidelberg, 2004.

[3] J. Buchli, L. Righetti, and A.J. Ijspeert. A dy-
namical systems approach to learning: a frequency-
adaptive hopper robot. In Proceedings of the VI-
IIth European Conference on Artificial Life ECAL
2005, Lecture Notes in Artificial Intelligence, pages
210–220. Springer Verlag, 2005.

[4] M. Conrad and K.P. Zauner. Molecular Computing,
chapter Chemical based computing and problems of
high computational complexity: the reaction diffu-
sion paradigm, pages 1–31. MIT Press, Cambridge,
2003.

[5] J.C. Doyle, S.H Low, F. Paganini, G. Vinnicombe,
W. Willinger, and P. Parrillo. Robust Design, chap-
ter Robustness and the Internet: Design and Evo-
lution, pages 231–271. Santa Fe Institute studies in
the science of complexity. Oxford University Press,
2005.

[6] I. R. Epstein. Complex dynamical behavior in ”sim-
ple” chemical systems. J. Phys. Chem., 88:187–198,
1984.

[7] Abelson et al. Amorphous computing. Communi-
cations of the ACM, 43(5), 2000.

[8] S. Grossberg. The Adaptive Brain I. Cognition,
Learning, Reinforcement, and Rhythm, chapter As-
sociative and competitive principles of learning and
development: the temporal unfolding and stability
of STM and LTM patterns. North-Holland, Ams-
terdam, 1988.

[9] S. Guerin. Personal communication.
[10] H. Haken. Synergetics. An introduction. Springer

Verlag Berlin Heidelberg, 3rd edition, 1983.
[11] H. Haken. Information and Self-Organization

- A Macroscopic Approach to Complex Systems.
Springer, 1999.

[12] S. Haykin. Neural Networks: A Comprehensive
Foundation. Prentice Hall, 2nd edition, 1998.

[13] A.W. Hübler. Predicting complex systems with
a holistic approach: The ”throughput” criterion.
Complexity, 10(3):11–16, 2005.

[14] A.J. Ijspeert. Vertebrate locomotion. In M.A. Ar-
bib, editor, The handbook of brain theory and neural
networks, pages 649–654. MIT Press, 2003.

[15] J.K. Jun and A. Hübler. Formation and structure of
ramified charge transportation networks in an elec-
tromechanical system. PNAS, 102:536–540, 2005.

[16] S. Kauffman. Molecular autonomous agents. Philo-
sophical Transactions: Mathematical, Physical and
Engineering Sciences, 361(1807):1089–1099, 2003.

[17] A. Klug. From macromolecules to biological assem-
blies (nobel lecture). Angew. Chem., 22(8):565–582,
1983.

[18] H. Kuhn and J. Waser. Molecular self-organization
and the origin of life. Angewandte Chemie Interna-
tional Edition in English, 20(6-7):500–520, 1981.

[19] J.M. Lehn. Supramolecular chemistry: from molec-
ular information towards self-organization and
complex matter. Reports on progress in physics,
67:249–265, 2004.

[20] F.L. Lewis. Applied Optimal Control and Estima-
tion, chapter Introduction to Modern Control The-
ory. Prentice-Hall, 1992.

[21] M.A. Lewis, R. Etienne-Cummings, M. Hartmann,
Z.R. Xu, and A.H. Cohen. An in silico central pat-
tern generator: silicon oscillator, coupling entrain-
ment, and physical computation. Biological Cyber-
netics, 88:137–151, 2003.

[22] M. Mahowald. Analog vlsi chip for stereocorrespon-
dence. In Proc. IEEE Int. Symposium on Circuits
and Systems, volume 6, pages 347–350. IEEE, 1994.

[23] M. Morari. Personal communication (Lectures on
Control Theory, ETHZ).

[24] T. Nagatani. The physics of traffic jams. Rep. Prog.
Phys., 65:1331–1386, 2002.

[25] R. Nagpal. A catalog of biologically-inspired
primitives for engineering self-organization. In
G. Di Marzo Serugendo, A. Karageorgos, and Rana
O.F., editors, Engineering Self-Organising Systems:



10

Nature-Inspired Approaches to Software Engineer-
ing, number 2977 in Lecture Notes in Computer
Science, pages 53–62. Springer, 2004.

[26] D. Philp and J.F. Stoddart. Self-assembly in nat-
ural and unnatural systems. Angewandte Chemie
International Edition in English, 35(11):1154–1196,
1996.

[27] Stephen K. Scott. Oscillations, Waves and Chaos
in Chemical Kinetics. Oxford chemistry primers.
Oxford University Press Inc., 1994.

[28] C.E. Shannon. A mathematical theory of communi-
cation. The Bell System Technical Journal, 27:623–
656, 1948.

[29] S. Skogestad and I. Postlethwaite. Multivariable
Feedback Control. John Wiley & Sons, Chichester,
1996.

[30] S. Still and M.W. Tilden. Coupled oscillators
and walking control: a hardware implementation
of a distributed motor system. In N. Elsner and
R. Wehner, editors, Proceedings of the 26th Goet-
tingen Neurobiology Conference, volume 2, page
262, 1998.

[31] R. Stoop, J. Buchli, G. Keller, and W.H. Steeb.
Stochastic resonance in pattern recognition by a
holographic neuron model. Physical Review E, 67,
2003.

[32] S.H. Strogatz. Exploring complex networks. Na-
ture, 410:268–276, 2001.

[33] H. Van Dyke Parunak. ”go to the ant”: Engineering
principles from natural multi-agent systems. An-
nals of Operation Research, 75:69–101, 1997.

[34] V.K. Vanag, Y. Lingfra, M. Dolink, A.M. Zhabotin-
sky, and I.R. Epstein. Oscillatory cluster patterns
in a homogeneous chemical system with global feed-
back. Nature, 406:389–391, 2000.

[35] K. Wiesenfeld and F. Moss. Stochastic resonance
and the benefits of noise: From ice ages to crayfish
and squids. Nature, 373:33–36, January 1995.

[36] W. Willinger and J. Doyle. Robust Design, chapter
Robustness and the Internet: Design and Evolu-
tion, pages 231–271. Santa Fe Institute studies in
the science of complexity. Oxford University Press,
2005.

[37] S. Wolfram. Approaches to complexity engineering.
Physica D, 22:385–399, 1986.

[38] L. Yang and I.R. Epstein. Oscillatory turing pat-
terns in reaction-diffusion systems. Physical Review
Letters, 90(17), 2003.

[39] K.P Zauner. Molecular information technology.
Critical Reviews in Solid State and Materials Sci-
ences, 30:33–69, 2005.

[40] Respectively the self-organization that will hap-
pen in such systems was not planned in and ac-
counted for, it will start to be apparent in non-
nominal situations only, when the interactions that
were not taken in account start to be important. In
this cases this effects are usually negative or even
catastrophic, e.g. cascading failures in power grids,
congestion breakdown in communication networks,
burn out of components.

[41] Note that with pattern we do imply spatio-
temporal pattern as well as purely spatial or tem-
poral patterns

[42] This effects chain up, i.e. the order parameters of
one level can be the subsystems of the next “higher”
level.

[43] Instead of simple functions this can be extended to
sequences or similar concepts in order to account
for dynamics, but this is of no importance for the
discussion in this section.


